Preview

The EYE GLAZ

Advanced search

A detailed examination protocol for evaluating the efficacy of myopia control methods

https://doi.org/10.33791/2222-4408-2020-3-5-18

Abstract

To ensure a reliable assessment of the efficacy of myopia control methods and their comparison, it is important that the studies are carried out according to identical protocols. Purpose. To analyze patient examination protocols used by different authors for assessing the efficacy of myopia control methods, and to evaluate the principles of forming the main (treatment) and control groups. Materials and methods. Domestic and foreign authors research works devoted to the assessment of myopia control methods were analyzed, most of which were randomized controlled studies. Results and Discussion. The authors propose their own protocol for evaluation of the efficacy of myopia control methods that includes methods for evaluating the results, recommended number (frequency) and duration of follow-up, represented as a checklist. Conclusion. The proposed protocol can be used for planning and executing a clinical research.

Conflict of interest: the authors are members of the editorial board of the journal and recused themselves from review process and from making decision regarding acceptance of this article.

About the Authors

O. V. Proskurina
The Helmholtz National Medical Research Center of Eye Diseases
Russian Federation
Olga V. Proskurina, Dr. Sci. (Med.), Research Officer, Department of Pathology of Refraction, Binocular Vision and Ophthalmic Ergonomics


E. P. Tarutta
The Helmholtz National Medical Research Center of Eye Diseases
Russian Federation
Elena P. Tarutta, Dr. Sci. (Med.), Professor, Head of Department of Pathology of Refraction, Binocular Vision and Ophthalmic Ergonomics


References

1. Gifford K.L., Richdale K., Kang P., Aller T.A., Lam C.S., Liu Y.M. et al. Clinical management guidelines report. Invest Ophthalmol Vis Sci. 2019;60(3):184–203. https://doi.org/10.1167/iovs.18-259772

2. Tarutta E.P., Proskurina O. V., Milash S.V., Ibatulin R.A., Tarasova N.A., Kovychev A.S. et al. Peripheral defocus induced by “Perifocal-M” spectacles and myopia progression in children. Russian Pediatric Ophthalmology. 2015;10(2):33–37. (In Russ.)

3. Li Y., Fu Y., Wang K., Liu Z., Shi X., Zhao M. Evaluating the myopia progression control efficacy of defocus incorporated multiple segments (DIMS) lenses and Apollo progressive addition spectacle lenses (PALs) in 6- to 12-year-old children: study protocol for a prospective, multicenter, randomized controlled trial. Trials. 2020;21(1):279. https://doi.org/10.1186/s13063-020-4095-8

4. Lam C.S.Y., Tang W.C., Tse D.Y., Lee R.P.K., Chun R.K.M, Hasegawa K. et al. Defocus incorporated multiple segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial. Br J Ophthalmol. 2020;104(3):363–368. https://doi.org/10.1136/bjophthalmol-2018-313739

5. Tarutta E.P. Objective accommodometry. In: Katargina L.A., ed. Accommodation: doctor’s guide. Moscow: Aprel’; 2012:50–62. (In Russ.)

6. Tarutta E.P., Tarasova N.A. The comprehensive study of accommodation insufficiency. Russian Pediatric Ophthalmology. 2013;2:38–40. (In Russ.)

7. Tarutta E.P., Filinova O.B., Kvaratskhelia N.G., Toloraya R.R. Objective investigation of relative accommodation reserves and stability. Russian Pediatric Ophthalmology. 2010;2:14–16. (In Russ.)

8. Tarutta E.P., Proskurina O.V., Tarasova N.A., Milash S.V., Markossian G.A. Long-term results of perifocal defocus spectacle lens correction in children with progressive myopia. The Russian Annals of Ophthalmology. 2019;135(5):46–53. (In Russ.) https://doi.org/10.17116/oftalma201913505146

9. Tarutta E.P., Ibatulin R.A., Milash S.V., Tarasova N.A., Proskurina O. V., Smirnova T.S. et al. Influence of “Perifocal” glasses on peripheral defocus and progression of myopia in children. Russian Pediatric Ophthalmology. 2014;9(4):53. (In Russ.)

10. Hasebe S., Jun J., Varnas S.R. Myopia control with positively aspherized progressive addition lenses: a 2-year, multicenter, randomized, controlled trial. Invest Ophthalmol Vis Sci. 2014;55(11):7177–7188. https://doi.org/10.1167/iovs.12-11462

11. Walline J.J., Gaume Giannoni A., Sinnott L.T., Chandler M.A., Huang J., Mutti D.O. et al. Randomized Trial of soft multifocal contact lenses for myopia control: baseline data and methods. Optom Vis Sci. 2017;94(9):856–866. https://doi.org/10.1097/OPX.0000000000001106

12. Tarutta E.P., Iomdina E.N., Toloraya R.R., Kruzhkova G.V. The Dynamics of Peripheral Refraction and Eye Shape in Children with Progressive Myopia Wearing Orthokeratology Lenses. Russian Ophthalmological Journal. 2016;9(1):62–66. (In Russ.) https://doi.org/10.21516/2072-0076-2016-9-1-62-66

13. Berntsen D.A., Barr C.D., Mutti D.O., Zadnik K. Peripheral defocus and myopia progression in myopic children randomly assigned to wear single vision and progressive addition lenses. Invest Ophthalmol Vis Sci. 2013;54(8):5761–5770. https://doi.org/10.1167/iovs.13-11904

14. Kim J., Lim D.H., Han S.H., Chung T-Y. Predictive factors associated with axial length growth and myopia progression in orthokeratology. PLoS One. 2019;14(6):e0218140. https://doi.org/10.1371/journal.pone.0218140

15. Zhu M.J., Feng H.Y., He X.G., Zou H.D., Zhu J.F. The control effect of orthokeratology on axial length elongation in Chinese children with myopia. BMC Ophthalmol. 2014;14:141. https://doi.org/10.1186/1471-2415-14-141

16. Neroev V.V., Tarutta E.P., Harutyunyan S.G., Khandzhyan A.T., Khodzhabekyan N.V., Proskurina O.V. Wavefront and accommodation parameters under different conditions of correction in myopia and hyperopia. The Russian Annals of Ophthalmology. 2018;134(5):15–20. (In Russ.) https://doi.org/10.17116/oftalma201813405115

17. McAlinden C., Moore J.E., McGilligan V.E., Moore T.C. Spherical aberration and higher order aberrations with Balafilcon A (PureVision) and Comfilcon A (Biofinity). Graefes Arch Clin Exp Ophthalmol. 2011;249(4):607–612. https://doi.org/10.1007/s00417-010-1476-9

18. Lu F., Mao X., Qu J., Xu D., He J.C. Monochromatic wavefront aberration in the human eye with contact lenses. Optom Vis Sci. 2003;80:135–141. https://doi.org/10.1097/00006324-200302000-00009

19. Roberts B., Athappilly G., Tinio B., Naikoo H., Asbell P. Higher order aberrations induced by soft contact lenses in normal eyes with myopia. Eye Contact Lens. 2006;32(3):138–142. https://doi.org/10.1097/01.icl.0000195570.73454.a5

20. Gatti R.F., Lipener С. II. Optical performance of different soft contact lenses based on wavefront analysis. Arq Bras Ophthalmol. 2008;6:42–46. https://doi.org/10.1590/S0004-27492008000700009

21. Lindskoog Pettersson A., Jarkö C., Alvin A., Unsbo P., Brautaset R. Spherical aberration in contact lens wear. Cont Lens Anterior Eye. 2008;31(4):189–193. https://doi.org/10.1016/j.clae.2008.05.005

22. Chamberlain P., Peixoto-de-Matos S.C., Logan N.S., Ngo C., Jones D., Young G. A 3-year randomized clinical trial of misight lenses for myopia control. Optom Vis Sci. 2019;96(8):556–567. https://doi.org/10.1097/OPX.0000000000001410

23. Jones L.A., Sinnott L.T., Mutti D.O., Mitchell G.L., Moeschberger M.L., Zadnik K. Parental history of myopia, sports and outdoor activities, and future myopia. Invest Ophthalmol Vis Sci. 2007;48(8):3524–3532. https://doi.org/10.1167/iovs.06-1118

24. Tarutta E.P., Egorova T.S., Alyaeva O.O., Verzhanskaya T.Yu. Ophthalmoergonomic and functional parameters in effectiveness estimation of orthokeratologic correction of myopia in children and teenagers. Russian Ophthalmological Journal. 2012;5(3):63–66. (In Russ.)

25. Lee Y., Wang J., Chiu C. Effect of orthokeratology on myopia progression: twelve-year results of a retrospective cohort study. BMC Ophthalmol. 2017;17(1):243. https://doi.org/10.1186/s12886-017-0639-4

26. Yam J.C., Jiang Y., Tang S.M., Law A.K.P., Chan J.J., Wong E. et al. Low-concentration atropine for myopia progression (lamp) study: a randomized, double-blinded, placebo-controlled trial of 0.05%, 0.025%, and 0.01% atropine eye drops in myopia control. Ophthalmology. 2019;126(1):113–124. https://doi.org/10.1016/j.ophtha.2018.05.029

27. Chia A., Chua W.H., Cheung Y.B., Wong W.L., Lingham A., Fong A. et al. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses (atropine for the treatment of myopia 2). Ophthalmology. 2012;119(2):347–354. https://doi.org/10.1016/j.ophtha.2011.07.031

28. Long W., Li Z., Hu Y., Cui D. Zhai Z., Yang X. Pattern of axial length growth in children myopic anisometropes with orthokeratology treatment. Curr Eye Res. 2019;17:1–5. https://doi.org/10.1080/02713683.2019.17016859

29. Sankaridurg P., Holden B., Smith E. 3rd, Naduvilath T., Chen X., de la Jara P.L. et al. Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results. Invest Ophthalmol Vis Sci. 2011;52(13):9362–9367. https://doi.org/10.1167/iovs.11-7260

30. Fu A., Stapleton F., Wei L., Wang W., Zhao B., Watt K. et al. Effect of low-dose atropine on myopia progression, pupil diameter and accommodative amplitude: low-dose atropine and myopia progression. Br J Ophthalmol. Published Online First: 21 February 2020. https://doi.org/10.1136/bjophthalmol-2019-315440

31. Fu A.C., Qin J., Rong J.B., Ji N., Wang W.Q., Zhao B.X. et al. Effects of orthokeratology lens on axial length elongation in unilateral myopia and bilateral myopia with anisometropia children. Cont Lens Anterior Eye. 2020;43(1):73–77. https://doi.org/10.1016/j.clae.2019.12.001

32. Anstice N.S., Phillips J.R. Effect of dual-focus soft contact lens wear on axial myopia progression in children. Ophthalmology. 2011;118(6):1152–1161. https://doi.org/10.1016/j.ophtha.2010.10.035

33. Walline J.J., Greiner K.L., McVey M.E., Jones-Jordan L.A. Multifocal contact lens myopia control. Optom Vis Sci. 2013;90(11):1207–1214. https://doi.org/10.1097/OPX.0000000000000036

34. Tarutta E.P., Verzhanskaya T.Yu. Stabilizing effect of orthokeratology lenses (ten-year follow-up results). The Russian Annals of Ophthalmology. 2017;133(1):49–54. (In Russ.) https://doi.org/10.17116/oftalma2017133149-54

35. Yoo Y.S., Kim D.Y., Byun Y.-S., Ji Q., Chung I.-K., Whang W.‑J. et al. Impact of peripheral optical properties induced by orthokeratology lens use on myopia progression. Heliyon. 2020;6(4):e03642. https://doi.org/10.1016/j.heliyon.2020.e03642

36. Proskurina O.V. Cycloplegic effectiveness of cyclopentolate and tropicamide preparations compared with atropinization. The Russian Annals of Ophthalmology. 2002;118(6):42–45. (In Russ.)

37. Tarutta E.P., Tarasova N.A., Milash S.V., Proskurina O.V., Markosian G.A. The influence of different means of myopia correction on peripheral refraction depending on the direction of gaze. The Russian Annals of Ophthalmology. 2019;135(4):60–69. (In Russ.) https://doi.org/org/10.17116/oftalma201913504160

38. Lin Z., Martinez A., Chen X. et al. Peripheral defocus with single-vision spectacle lenses in myopic children. Optom Vis Sci. 2010;87(1):4–9. https://doi.org/10.1097/OPX.0b013e3181c078f1

39. Backhouse S., Fox S., Ibrahim B., Phillips J.R. Peripheral refraction in myopia corrected with spectacles versus contact lenses. Ophthalmic Physiol Opt. 2012;32(4):294–303. https://doi.org/10.1111/j.1475-1313.2012.00912.x


Review

For citations:


Proskurina O.V., Tarutta E.P. A detailed examination protocol for evaluating the efficacy of myopia control methods. The EYE GLAZ. 2020;22(3(131)):5-18. (In Russ.) https://doi.org/10.33791/2222-4408-2020-3-5-18

Views: 946


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-4408 (Print)
ISSN 2686-8083 (Online)