Current trends in the management of reparative processes after glaucoma surgery: A literature review (Part 2)
https://doi.org/10.33791/2222-4408-2025-4-336-342
Abstract
Fibrotic remodeling of the filtration area after glaucoma surgery remains a major cause of surgical failure, driving the development of multi-tiered preventive strategies.
Purpose. To summarize and critically appraise contemporary strategies for modulating the wound-healing response after glaucoma surgery—encompassing surgical approaches, physical and biological barrier technologies, nanostructured surface coatings, and geneand cell-based therapies—to prevent and control postoperative fibrosis.
Materials and methods. This review draws on 30 peer-reviewed articles published within the past decade and indexed in PubMed, Scopus, and Web of Science. The analysis focused on studies addressing reparative mechanisms following glaucoma surgery, fibrosis prevention strategies, and emerging biomedical technologies.
Results. Analysis of modern surgical optimization techniques shows that the use of adjustable sutures, Ahmed and Baerveldt drainage devices, and minimally invasive implants (iStent, Hydrus, XEN Gel Stent) helps reduce inflammation, ensure uniform aqueous humor outflow, and suppress fibroblast activity. Minimally invasive technologies demonstrate favorable clinical outcomes in patients with early-stage glaucoma, whereas drainage devices provide more sustained intraocular pressure reduction in patients at high risk of fibrosis. Anti-adhesive membranes and nanostructured coatings based on titanium or silver effectively prevent cellular adhesion and exhibit additional anti-inflammatory and antibacterial properties. Gene therapy and mesenchymal stem cells show high potential in suppressing fibrosis at the preclinical level but require further investigation to confirm safety and efficacy. The most clinically applicable developments include antiproliferative gels and implantable physical barriers that provide long-term protection of the filtration area after surgery.
Conclusion. Modern technologies for preventing postoperative fibrosis in glaucoma surgery represent varying degrees of translational maturity—from clinically implemented methods to those still undergoing preclinical validation. The most evidence-based options for clinical use are minimally invasive drainage devices, anti-adhesive coatings, and physical barriers, whereas geneand cell-based therapies require additional proof of efficacy and safety.
About the Authors
E. N. BilalovUzbekistan
Erkin N. Bilalov, Dr. Sci. (Med.), Professor, Head of the Department of Ophthalmology
2 Farobi Str., Tashkent, 100109
F. A. Bakhritdinova
Uzbekistan
Fazilat A. Bakhriddinova, Dr. Sci. (Med.), Professor, Department of Ophthalmology
2 Farobi Str., Tashkent, 100109
B. E. Bilalov
Uzbekistan
Bahodir E. Bilalov, Cand. Sci. (Med.), Associate Professor, Department of Ophthalmology
2 Farobi Str., Tashkent, 100109
O. I. Oripov
Uzbekistan
Okilkhon I. Oripov, Cand. Sci. (Med.), Department of Ophthalmology
2 Farobi Str., Tashkent, 100109
References
1. Panarelli JF, Moster MR, Garcia-Feijoo J, et al; INN005 Study Group. Ab-Externo MicroShunt versus Trabeculectomy in Primary Open-Angle Glaucoma: Two-Year Results from a Randomized, Multicenter Study. Ophthalmology. 2024;131(3):266–276. doi: 10.1016/j.ophtha.2023.09.023
2. Ang BCH, Lim SY, Betzler BK, et al. Recent Advancements in Glaucoma Surgery-A Review. Bioengineering (Basel). 2023;10(9):1096. doi: 10.3390/bioengineering10091096
3. Zhou M, Wang W, Huang W, Zhang X. Trabeculectomy with versus without releasable sutures for glaucoma: a meta-analysis of randomized controlled trials. BMC Ophthalmol. 2014;14:41. doi: 10.1186/1471-2415-14-41
4. Petrov SY. Principles of modern glaucoma surgery according to the 4th edition of the European Glaucoma Guidelines (analytical commentary). RMJ. Clinical Ophthalmology. 2017;17(3):184–189 (In Russ.).
5. Fu X, He J, Li G, et al. Ahmed glaucoma valve implant for refractory glaucoma in children: A systematic review and meta-analysis. Sci Prog. 2025;108(1):368504241301520. doi: 10.1177/00368504241301520
6. Svetozarsky SN, Maslennikova YA, Anikeeva MV. Modern technologies of surgical treatment for open-angle glaucoma. Modern Technologies in Medicine. 2014;6(1):102–109 (In Russ.).
7. Popova EV. Prevention of scarring of the surgical area in primary open-angle glaucoma surgery. Practical Medicine. 2016;(6(98)):141–144 (In Russ.).
8. de Oliveira CM, Ferreira JLM. Overview of cicatricial modulators in glaucoma fistulizing surgery. Int Ophthalmol. 2020;40(10):2789–2796. doi: 10.1007/s10792-020-01454-w
9. Bikbov MM, Khusnitdinov II, Mannanova RF. The use of digel and xenocollagen drainage in glaucoma surgery: a literature review. Practical Medicine. 2017;1(9(110)):121–124 (In Russ.).
10. Ahmed IIK, Sadruddin O, Panarelli JF. Subconjunctival filtration in evolution: current evidence on MicroShunt implantation for treating patients with glaucoma. Eye Vis (Lond). 2023;10(1):10. doi: 10.1186/s40662-022-00322-1
11. Fea AM, Ricardi F, Cariola R, Rossi A. Hydrus microstent for the treatment of primary open-angle glaucoma: overview of its safety and efficacy. Expert Rev Med Devices. 2023;20(12):1009– 1025. doi: 10.1080/17434440.2023.2259788
12. Traverso CE, Carassa RG, Fea AM, et al. Effectiveness and Safety of Xen Gel Stent in Glaucoma Surgery: A Systematic Review of the Literature. J Clin Med. 2023;12(16):5339. doi: 10.3390/jcm12165339
13. El Afrit MA, Saadouli D, Hachicha G, et al. The outcome of surgical treatment in advanced glaucoma. Arch Soc Esp Oftalmol (Engl Ed). 2021;96(4):189–194. English, Spanish. doi: 10.1016/j.oftal.2020.05.041
14. Occhiutto ML, Maranhão RC, Costa VP, Konstas AG. Nanotechnology for Medical and Surgical Glaucoma Therapy – A Review. Adv Ther. 2020;37(1):155–199. doi: 10.1007/s12325-019-01163-6
15. Volik SA, Kade AX, Chudilova GA, et al. On the choice of viscoelastic in shunting glaucoma surgery. Kuban Scientific Medical Bulletin. 2015;2:28–32 (In Russ.).
16. Pearson C, Martin K. Stem cell approaches to glaucoma: from aqueous outflow modulation to retinal neuroprotection. Prog Brain Res. 2015;220:241–256. doi: 10.1016/bs.pbr.2015.04.005
17. Shen TY, Hu WN, Cai WT, et al. Effectiveness and Safety of Trabeculectomy along with Amniotic Membrane Transplantation on Glaucoma: A Systematic Review. J Ophthalmol. 2020;2020:3949735. doi: 10.1155/2020/3949735
18. Juliana FR, Kesse S, Boakye-Yiadom KO, et al. Promising Approach in the Treatment of Glaucoma Using Nanotechnology and Nanomedicine-Based Systems. Molecules. 2019;24(20):3805. doi: 10.3390/molecules24203805
19. Kwon S, Kim SH, Khang D, Lee JY. Potential Therapeutic Usage of Nanomedicine for Glaucoma Treatment. Int J Nanomedicine. 2020;15:5745–5765. doi: 10.2147/IJN.S254792
20. Pei K, Georgi M, Hill D, et al. Review: Neuroprotective Nanocarriers in Glaucoma. Pharmaceuticals (Basel). 2024;17(9):1190. doi: 10.3390/ph17091190
21. Shao CG, Sinha NR, Mohan RR, Webel AD. Novel Therapies for the Prevention of Fibrosis in Glaucoma Filtration Surgery. Biomedicines. 2023;11(3):657. doi: 10.3390/biomedicines11030657
22. Collotta D, Colletta S, Carlucci V, et al. Pharmacological Approaches to Modulate the Scarring Process after Glaucoma Surgery. Pharmaceuticals (Basel). 2023;16(6):898. doi: 10.3390/ph16060898
23. Luo J, Tan G, Thong KX, et al. Non-Viral Gene Therapy in Trabecular Meshwork Cells to Prevent Fibrosis in Minimally Invasive Glaucoma Surgery. Pharmaceutics. 2022;14(11):2472. doi: 10.3390/pharmaceutics14112472
24. Shao T, Li X, Ge J. Target drug delivery system as a new scarring modulation after glaucoma filtration surgery. Diagn Pathol. 2011;6:64. doi: 10.1186/1746-1596-6-64
25. Andrés-Guerrero V, Perucho-González L, García-Feijoo J, et al. Current Perspectives on the Use of Anti-VEGF Drugs as Adjuvant Therapy in Glaucoma. Adv Ther. 2017;34(2):378–395. doi: 10.1007/s12325-016-0461-z
26. Luo J, Fajardo-Sanchez J, Qin M, et al. Preliminary antifibrotic and vasoconstrictor effects of adrenaline in Schlemm’s canal and suprachoroidal minimally invasive glaucoma surgery in primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 2025;263(2):489–500. doi: 10.1007/s00417-024-06642-3
27. Cheng WS, Chen CL, Chen JT, et al. AR12286 Alleviates TGF-β-Related Myofibroblast Transdifferentiation and Reduces Fibrosis after Glaucoma Filtration Surgery. Molecules. 2020;25(19):4422. doi: 10.3390/molecules25194422
28. Park HY, Kim JH, Park CK. VEGF induces TGF-β1 expression and myofibroblast transformation after glaucoma surgery. Am J Pathol. 2013;182(6):2147–2154. doi: 10.1016/j.ajpath.2013.02.009
29. Millá E, Ventura-Abreu N, Vendrell C, et al. Differential Gene and Protein Expression of Conjunctival Bleb Hyperfibrosis in Early Failure of Glaucoma Surgery. Int J Mol Sci. 2023;24(15):11949. doi: 10.3390/ijms241511949
30. Chun YY, Yap ZL, Seet LF, et al. Positive-charge tuned gelatin hydrogel-siSPARC injectable for siRNA anti-scarring therapy in post glaucoma filtration surgery. Sci Rep. 2021;11(1):1470. doi: 10.1038/s41598-020-80542-4
Review
For citations:
Bilalov E.N., Bakhritdinova F.A., Bilalov B.E., Oripov O.I. Current trends in the management of reparative processes after glaucoma surgery: A literature review (Part 2). The EYE GLAZ. 2025;27(4):336-342. (In Russ.) https://doi.org/10.33791/2222-4408-2025-4-336-342






















