Preview

The EYE GLAZ

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Reduction of refraction and baseline axial length in a patient using orthokeratology lenses: A clinical case

https://doi.org/10.33791/2222-4408-2025-4-327-335

Abstract

This article presents a 6-year follow-up of a patient who first presented at the age of 15 and underwent orthokeratology as a method of myopia control. Baseline visual acuity: OD = 0.1 with sph –2.5D = 1.0; OS = 0.3 with sph –1.25D = 1.0. After five years of wearing individually designed orthokeratology lenses (OK lenses) by OK Vision, a decrease in axial length (AL) was recorded: 0.39 mm in the right eye and 0.28 mm in the left eye. The reduction in AL was accompanied by a 1.0D decrease in myopic refraction in both eyes. The observed change in AL cannot be explained by an increase in choroidal thickness and/or a decrease in central corneal thickness and therefore requires further investigation. The impact of myopia control and accommodation management methods on axial length change remains insufficiently studied. Future research should include evaluation of accommodative function and choroidal thickness as part of standard clinical protocols for patients undergoing myopia control therapy. 

About the Authors

M. M. Sitka
Cheboksary Branch of the S. Fyodorov Eye Microsurgery Federal State Institution
Russian Federation

Marina M. Sitka, Cand. Sci. (Med.), Head of the Department of Optical Vision Correction

10 Traktorostroiteley Ave., Cheboksary, Chuvash Republic, 428028



S. B. Emelyanova
Cheboksary Branch of the S. Fyodorov Eye Microsurgery Federal State Institution
Russian Federation

Svetlana B. Emelyanova, Ophthalmologist, Department of Optical Vision Correction

10 Traktorostroiteley Ave., Cheboksary, Chuvash Republic, 428028



S. G. Bodrova
Cheboksary Branch of the S. Fyodorov Eye Microsurgery Federal State Institution
Russian Federation

Svetlana G. Bodrova, Cand. Sci. (Med.), Ophthalmologist, Department of Optical Vision Correction

10 Traktorostroiteley Ave., Cheboksary, Chuvash Republic, 428028



A. A. Voskresenskaya
Cheboksary Branch of the S. Fyodorov Eye Microsurgery Federal State Institution; Postgraduate Doctors’ Training Institute
Russian Federation

Anna A. Voskresenskaya, Cand. Sci. (Med.), Deputy Director for Research, Cheboksary Branch of the S. Fyodorov Eye Microsurgery Federal State Institution

10 Traktorostroiteley Ave., Cheboksary, Chuvash Republic, 428028,

27 Mikhail Sespel Str., Cheboksary, Chuvash Republic, 428018



T. N. Okhotina
Postgraduate Doctors’ Training Institute; Chuvash State University named after I.N. Ulyanov
Russian Federation

Tamara N. Okhotina, Cand. Sci. (Med.), Lecturer, Chuvash State University named after I.N. Ulianov; Lecturer, Postgraduate Doctors’ Training Institute

27 Mikhail Sespel Str., Cheboksary, Chuvash Republic, 428018

15 Moskovsky Ave., Cheboksary, Chuvash Republic, 428015



N. A. Pozdeyeva
Cheboksary Branch of the S. Fyodorov Eye Microsurgery Federal State Institution; Postgraduate Doctors’ Training Institute
Russian Federation

Nadezhda A. Pozdeyeva, Dr. Sci. (Med.), Associate Professor, Director, Cheboksary Branch of the S. Fyodorov Eye Microsurgery Federal State Institution; Professor, Department of Ophthalmology, Postgraduate Doctors’ Training Institute

10 Traktorostroiteley Ave., Cheboksary, Chuvash Republic, 428028,

27 Mikhail Sespel Str., Cheboksary, Chuvash Republic, 428018



References

1. McCullough SJ, O’Donoghue L, Saunders KJ. Six Year Refractive Change among White Children and Young Adults: Evidence for Significant Increase in Myopia among White UK Children. PLoS One. 2016;11(1):e0146332. doi: 10.1371/journal.pone.0146332

2. Zhang XJ, Zaabaar E, French AN, et al. Advances in myopia control strategies for children. Br J Ophthalmol. 2025;109(2):165– 176. doi: 10.1136/bjo-2023-323887

3. Lanca C, Pang CP, Grzybowski A. Effectiveness of myopia control interventions: A systematic review of 12 randomized control trials published between 2019 and 2021. Front Public Health. 2023;11:1125000. doi: 10.3389/fpubh.2023.1125000

4. Sankaridurg P, Berntsen DA, Bullimore MA, et al. IMI 2023 Digest. Invest Ophthalmol Vis Sci. 2023;64(6):7. doi: 10.1167/iovs.64.6.7

5. Jonas JB, Ang M, Cho P, et al. IMI Prevention of Myopia and Its Progression. Invest Ophthalmol Vis Sci. 2021;62(5):6. doi: 10.1167/iovs.62.5.6

6. Hu Y, Ding X, Jiang J, et al. Long-Term Axial Length Shortening in Myopic Orthokeratology: Incident Probability, Time Course, and Influencing Factors. Invest Ophthalmol Vis Sci. 2023;64(15):37. doi: 10.1167/iovs.64.15.37

7. Wang A, Yang C, Shen L, et al. Axial length shortening after orthokeratology and its relationship with myopic control. BMC Ophthalmol. 2022;22(1):243. doi: 10.1186/s12886-022-02461-4

8. Gardner DJ, Walline JJ, Mutti DO. Choroidal Thickness and Peripheral Myopic Defocus during Orthokeratology. Optom Vis Sci. 2015;92(5):579–588. doi: 10.1097/OPX.0000000000000573

9. González-Mesa A, Villa-Collar C, Lorente-Velázquez A, Nieto-Bona A. Anterior segment changes produced in response to long-term overnight orthokeratology. Curr Eye Res. 2013;38(8):862–870. doi: 10.3109/02713683.2013.790977

10. Queirós A, Lopes-Ferreira D, Yeoh B, et al. Refractive, biometric and corneal topographic parameter changes during 12months of orthokeratology. Clin Exp Optom. 2020;103(4):454–462. doi: 10.1111/cxo.12976

11. Lau JK, Cheung SW, Collins MJ, Cho P. Short-term changes in choroidal thickness and axial length in children fitted with orthokeratology lenses of different compression factors. Invest Ophthalmol Vis Sci. 2018;59:1786.

12. Lau JK, Wan K, Cheung SW, et al. Weekly Changes in Axial Length and Choroidal Thickness in Children During and Following Orthokeratology Treatment with Different Compression Factors. Transl Vis Sci Technol. 2019;8(4):9. doi: 10.1167/tvst.8.4.9

13. Lipson MJ, Harris JK, Lather HD, et al. Axial length in orthokeratology patients: large case series. Adv Ophthalmol Optom. 2016;5:00154.

14. Chen Z, Xue F, Zhou J, et al. Effects of Orthokeratology on Choroidal Thickness and Axial Length. Optom Vis Sci. 2016;93(9):1064–1071. doi: 10.1097/OPX.0000000000000894

15. Swarbrick HA, Alharbi A, Watt K, et al. Myopia control during orthokeratology lens wear in children using a novel study design. Ophthalmology. 2015;122(3):620–630. doi: 10.1016/j.ophtha.2014.09.028

16. Tarutta EP, Milash SV, Markosyan GA, Tarasova NA. Choroid and optical defocus. The Russian Annals of Ophthalmology. 2020;136(4):124–129 (In Russ.). doi: 10.17116/oftalma2020136041124

17. Kiseleva TN, Oganesyan OG, Romanova LI, et al. Optical biometry of the eye: the principle and the diagnostic potential of the method Russian Pediatric Ophthalmology. 2017;12(1):35– 42 (In Russ.). doi: 10.18821/1993-1859-2017-12-1-35-42

18. Chan B, Cho P, Cheung SW. Repeatability and agreement of two A-scan ultrasonic biometers and IOLMaster in non-orthokeratology subjects and post-orthokeratology children. Clin Exp Optom. 2006;89(3):160–168. doi: 10.1111/j.1444-0938.2006.00029.x

19. Delshad S, Collins MJ, Read SA, Vincent SJ. The time course of the onset and recovery of axial length changes in response to imposed defocus. Sci Rep. 2020;10(1):8322. doi: 10.1038/s41598-020-65151-5

20. Wang A, Yang C, Shen L, et al. Axial length shortening after orthokeratology and its relationship with myopic control. BMC Ophthalmol. 2022;22(1):243. doi: 10.1186/s12886-022-02461-4

21. Lau JK, Wan K, Cheung SW, et al. Weekly changes in axial length and choroidal thickness in children during and following orthokeratology treatment with different compression factors. Trans Vis Sci Tech. 2019;8(4):9. doi: 10.1167/tvst.8.4.9

22. Pashtaev NP, Pozdeeva NA, Zarayskaya MM, et al. Investigation of morphologic state of optic part of cornea and limb after wearing soft and orthokeratologic lenses. Practical medicine = Prakticheskaja meditsina. 2016;6:130–133 (In Russ.).

23. Milash SV, Tarutta EP. Changes of corneal epithelial thickness before and after ok-correction according to sd-oct. Russian ophthalmological journal. 2017;10(3):49–54 (In Russ.).

24. Alharbi A, Swarbrick HA. The effects of overnight orthokeratology lens wear on corneal thickness. Invest Ophthalmol Vis Sci. 2003;44(6):2518–2523. doi: 10.1167/iovs.02-0680

25. Chen D, Lam AK, Cho P. Posterior corneal curvature change and recovery after 6 months of overnight orthokeratology treatment. Ophthalmic Physiol Opt. 2010;30(3):274–280. doi: 10.1111/j.1475-1313.2010.00710.x

26. Kobayashi Y, Yanai R, Chikamoto N, et al. Reversibility of effects of orthokeratology on visual acuity, refractive error, corneal topography, and contrast sensitivity. Eye Contact Lens. 2008 Jul;34(4):224–228. doi: 10.1097/ICL.0b013e318165d501

27. Sinitsynа VI, Kolbenev IO, Kamenskikh TG. Evaluation of choroidal thickness in children with myopia. Saratov journal of medical scientific research. 2022;18(4):701–703 (In Russ.).

28. Ostrin LA, Harb E, Nickla DL, et al. IMI-The Dynamic Choroid: New Insights, Challenges, and Potential Significance for Human Myopia. Invest Ophthalmol Vis Sci. 2023;64(6):4. doi: 10.1167/iovs.64.6.4

29. Yan YN, Wang YX, Xu L, et al. Fundus Tessellation: Prevalence and Associated Factors: The Beijing Eye Study 2011. Ophthalmology 2015;122:1873–1880. doi: 10.1016/j.ophtha.2015.05.031

30. Tarutta EP, Milash SV, Epishina MV, Eliseeva EK. Changes in subfoveal choroidal thickness in myopic children who wear bifocal soft contact lenses. The Russian Annals of Ophthalmology. 2022;138(2):16–22 (In Russ.). doi: 10.17116/oftalma202213802116

31. Li Z, Cui D, Hu Y, et al. Choroidal thickness and axial length changes in myopic children treated with orthokeratology. Cont Lens Anterior Eye. 2017;40(6):417–423. doi: 10.1016/j.clae.2017.09.010

32. Kang P, Swarbrick H. Peripheral refraction in myopic children wearing orthokeratology and gas-permeable lenses. Optom Vis Sci. 2011;88(4):476–482. doi: 10.1097/OPX.0b013e31820f16fb

33. Tian F, Zheng D, Zhang J, et al. Choroidal and Retinal Thickness and Axial Eye Elongation in Chinese Junior Students. Invest Ophthalmol Vis Sci. 2021;62(9):26. doi: 10.1167/iovs.62.9.26

34. Drexler W, Findl O, Schmetterer L, et al. Eye elongation during accommodation in humans: differences between emmetropes and myopes. Invest Ophthalmol Vis Sci. 1998;39(11):2140– 2147.

35. Woodman-Pieterse EC, Read SA, Collins MJ, Alonso-Caneiro D. Regional Changes in Choroidal Thickness Associated with Accommodation. Invest Ophthalmol Vis Sci. 2015;56(11):6414– 6422. doi: 10.1167/iovs.15-17102

36. Croft MA, Nork TM, McDonald JP, et al. Accommodative movements of the vitreous membrane, choroid, and sclera in young and presbyopic human and nonhuman primate eyes. Invest Ophthalmol Vis Sci. 2013;54(7):5049–5058. doi: 10.1167/iovs.12-10847

37. Logan NS, Radhakrishnan H, Cruickshank FE, ey al. IMI Accommodation and Binocular Vision in Myopia Development and Progression. Invest Ophthalmol Vis Sci. 2021;62(5):4. doi: 10.1167/iovs.62.5.4

38. Bahar A, Pekel G. The effects of pharmacological accommodation and cycloplegia on axial length and choroidal thickness. Arq Bras Oftalmol. 2021;84(2):107–112. doi: 10.5935/0004-2749.20210015

39. Koshitc I, Svetlova O, Egemberdiev M. Physiological and biomechanical features of the interconnected functioning of the systems of accommodation, and aqueous production, and outflow. Hypotheses and actuating mechanisms of growth of the eye’s optical axis in the metabolic theory of adaptive myopia and in the retinal defocus theory. The EYE GLAZ. 2018;120(2):34–40 (In Russ.).

40. Iomdina EN, Bauer SM, Kotlyar KE. Eye Biomechanics:Theoretical Aspects and Clinical Applications. Edited by V.V. Neroev. Moscow: Real Taim, 2015:208 (In Russ.).


Review

For citations:


Sitka M.M., Emelyanova S.B., Bodrova S.G., Voskresenskaya A.A., Okhotina T.N., Pozdeyeva N.A. Reduction of refraction and baseline axial length in a patient using orthokeratology lenses: A clinical case. The EYE GLAZ. 2025;27(4):327-335. (In Russ.) https://doi.org/10.33791/2222-4408-2025-4-327-335

Views: 259


ISSN 2222-4408 (Print)
ISSN 2686-8083 (Online)