

Current trends in the management of reparative processes after glaucoma surgery: A literature review (Part 1)
https://doi.org/10.33791/2222-4408-2025-3-238-247
Abstract
Background. Glaucoma is a chronic progressive disease leading to significant vision loss and remains one of the leading causes of blindness worldwide. Among the most effective treatment options is surgical intervention aimed at lowering intraocular pressure (IOP) by creating or restoring aqueous humor outflow pathways. However, the major challenge of glaucoma surgery is postoperative fibrosis, which reduces surgical success. Purpose. To systematize current understanding of the wound-healing response following glaucoma surgery and to identify key strategies for controlling scarring. Materials and methods. The first part of the review includes scientific articles published over the past 10 years, focusing on wound-healing mechanisms in glaucoma surgery, methods for preventing fibrotic complications, and promising therapeutic strategies. A literature search was conducted in PubMed, Scopus, and Web of Science databases, yielding 59 articles for analysis. Results. The analysis showed that the main drivers of postoperative fibrosis after glaucoma surgery are the activation of inflammatory pathways, overproduction of extracellular matrix, and immune dysregulation. Antimetabolites remain the gold standard for preventing postoperative fibrosis. Mitomycin-C (MMC) significantly improves trabeculectomy outcomes, but at high doses it may induce dystrophic and necrotic changes in ocular surface tissues. By contrast, 5-fluorouracil (5-FU) has a safer profile but requires serial administration and is less effective. Combining low doses of antimetabolites with an amniotic membrane or hydrogel carriers reduces toxicity and prolongs drug action. Targeted inhibition of growth factors—including angiogenesis inhibitors, pirfenidone, and SB-431542—demonstrates high therapeutic potential. Conclusion. Effective management of reparative processes after glaucoma surgery requires a multi-tiered approach, encompassing inflammation reduction, modulation of cellular signaling pathways, and controlled extracellular matrix remodeling. Despite progress, further research is needed to optimize combination therapies, minimize adverse effects, and implement advanced biotechnological strategies for greater precision in clinical practice.
About the Authors
E. N. BilalovUzbekistan
Erkin N. Bilalov, Dr. Sci. (Med.), Professor, Head of the Department of Ophthalmology
2 Farobi Str., Tashkent, 100109
F. A. Bakhriddinova
Uzbekistan
Fazilat A. Bakhriddinova, Dr. Sci. (Med.), Professor, Department of Ophthalmology
2 Farobi Str., Tashkent, 100109
B. E. Bilalov
Uzbekistan
Bahodir E. Bilalov, Cand. Sci. (Med.), Associate Professor, Department of Ophthalmology
2 Farobi Str., Tashkent, 100109
O. I. Oripov
Uzbekistan
Okilkhon I. Oripov, Cand. Sci. (Med.), Senior Lecturer, Department of Ophthalmology
2 Farobi Str., Tashkent, 100109
References
1. Kalloniatis M, Bui BB, Phu J. Glaucoma: challenges and opportunities. Clin Exp Optom. 2024;107(2):107–109. doi: 10.1080/08164622.2023.2300295
2. Vision Loss Expert Group of the Global Burden of Disease Study; GBD 2019 Blindness and Vision Impairment Colla borators. Global estimates on the number of people blind or visually impaired by glaucoma: A meta-analysis from 2000 to 2020. Eye (Lond). 2024;38(11):2036–2046. doi: 10.1038/s41433-024-02995-5
3. Ehrlich JR, Burke-Conte Z, Wittenborn JS, et al. Prevalence of Glaucoma Among US Adults in 2022. JAMA Ophthalmol. 2024;142(11):1046–1053. doi: 10.1001/jamaophthal-mol.2024.3884
4. Movsisyan AB, Kuroedov AV. Diagnosis of glaucoma at the present stage. RMJ. Clinical Ophthalmology. 2023;23(1):47–53 (In Russ.). doi: 10.32364/2311-7729-2023-23-1-47-53
5. Kakarova DM, Khoshimova DX, Nazarov BM, Madaminkhujaeva DKK. Modern methods of glaucoma diagnosis. Re-health Journal. 2024;1(21):79–82 (In Russ.).
6. Fedorov VN, Vdovichenko VP, Korsakov MK, et al. Pharmacotherapy of glaucoma from the perspective of evidence-based medicine. Quality Clinical Practice. 2023;3:44–54 (In Russ.). doi: 10.37489/2588-0519-2023-3-44-54
7. Frolov MA, Ryabei AV, Frolov AM. Current issues of penetra ting and non-penetrating surgery as methods of choice for glaucoma. Bulletin of the Peoples’ Friendship University of Russia. Series: Medicine. 2018;22(4):428–442 (In Russ.).
8. Petrov SYu. Principles of modern glaucoma surgery accor ding to the 4th edition of the European Glaucoma Guidelines (analytical commentary). RMJ. Clinical Ophthalmology. 2017;17(3):184–189 (In Russ.).
9. Svetozarsky SN, Maslennikova YA, Anikeeva MV. Modern technologies of surgical treatment for open-angle glaucoma. Modern Technologies in Medicine. 2014;6(1):102–109 (In Russ.).
10. Antonova AV, Nikolaenko VP, Brzhesky VV, Vuks AYa. Effectiveness of sinus trabeculectomy in modern clinical practice. RMJ. Clinical Ophthalmology. 2023;23(1):21–26 (In Russ.). doi: 10.32364/2311-7729-2023-23-1-21-26
11. Popova EV. Prevention of scarring of the surgical area in primary open-angle glaucoma surgery. Practical Medicine. 2016;6(98):141–144 (In Russ.).
12. Alekseev IB, Samoylenko AI, Ailarova AK. Prolongation of the hypotensive effect of antiglaucoma surgery. RMJ. Clinical Ophthalmology. 2019;19(2):93–98 (In Russ.).
13. Egorova EV, Sidorova AV, Opletina AV, et al. Prevention of intraoperative complications during non-penetrating antiglaucoma operations. Siberian Scientific Medical Journal. 2015;35(2):55–59 (In Russ.).
14. Rabiolo A, Triolo G, Khaliliyeh D, et al. Hypotony Failure Criteria in Glaucoma Surgical Studies and Their Influence on Surgery Success. Ophthalmology. 2024 Jul;131(7):803–814. doi: 10.1016/j.ophtha.2024.01.008
15. Kazantseva AY. A new pathogenetically targeted method for treating patients with advanced-stage glaucoma. RMJ. Clinical Ophthalmology. 2020;20(1):21–25 (In Russ).
16. Shao CG, Sinha NR, Mohan RR, Webel AD. Novel Therapies for the Prevention of Fibrosis in Glaucoma Filtration Surgery. Biomedicines. 2023;11(3):657. doi: 10.3390/biomedicines11030657
17. Chong RS, Crowston JG, Wong TT. Experimental models of glaucoma filtration surgery. Acta Ophthalmol. 2021;99(1):9– 15. doi: 10.1111/aos.14485
18. Yoshida M, Kokubun T, Sato K, et al. DPP-4 Inhibitors Attenuate Fibrosis After Glaucoma Filtering Surgery by Suppressing the TGF-β/Smad Signaling Pathway. Invest Ophthalmol Vis Sci. 2023;64(10):2. doi: 10.1167/iovs.64.10.2
19. Cheng WS, Chen CL, Chen JT, et al. AR12286 Alleviates TGFβ-Related Myofibroblast Transdifferentiation and Reduces Fibrosis after Glaucoma Filtration Surgery. Molecules. 2020;25(19):4422. doi: 10.3390/molecules25194422
20. Carré C, Baudin F, Buteau B, et al. Effects of topical docosahexaenoic acid on postoperative fibrosis in an animal model of glaucoma filtration surgery. Acta Ophthalmol. 2023;101(1):e61–e68. doi: 10.1111/aos.15222
21. de Oliveira CM, Ferreira JLM. Overview of cicatricial modu lators in glaucoma fistulizing surgery. Int Ophthalmol. 2020;40(10):2789–2796. doi: 10.1007/s10792-020-01454-w
22. Li X, Leng Y, Li X, et al. The TβR II-targeted aptamer S58 prevents fibrosis after glaucoma filtration surgery. Aging (Albany NY). 2020;12(10):8837–8857. doi: 10.18632/aging.102997
23. Han R, Zhong H, Zhang Y, et al. MiR-146a reduces fibrosis after glaucoma filtration surgery in rats. J Transl Med. 2024;22(1):440. doi: 10.1186/s12967-024-05170-2
24. Lin QY, Li XJ, Leng Y, et al. Exosome-mediated aptamer S58 reduces fibrosis in a rat glaucoma filtration surgery mo del. Int J Ophthalmol. 2022;15(5):690–700. doi: 10.18240/ijo.2022.05.02
25. Sterenczak KA, Fuellen G, Jünemann A, et al. The Antibiotic Kitasamycin-A Potential Agent for Specific Fibrosis Preven ting Therapy after Fistulating Glaucoma Surgery? Pharmaceutics. 2023;15(2):329. doi: 10.3390/pharmaceutics15020329
26. Swogger J, Conner IP, Happ-Smith C, et al. Novel combination therapy reduces subconjunctival fibrosis after glaucoma filtration surgery in the rabbit model. Clin Exp Ophthalmol. 2021;49(1):60–69. doi: 10.1111/ceo.13884
27. Luo J, Tan G, Thong KX, et al. Non-Viral Gene Therapy in Trabecular Meshwork Cells to Prevent Fibrosis in Minimally Invasive Glaucoma Surgery. Pharmaceutics. 2022;14(11):2472. doi: 10.3390/pharmaceutics14112472
28. Dave B, Patel M, Suresh S, et al. Wound Modulations in Glaucoma Surgery: A Systematic Review. Bioengineering (Basel). 2024;11(5):446. doi: 10.3390/bioengineering11050446
29. Collotta D, Colletta S, Carlucci V, et al. Pharmacological Approaches to Modulate the Scarring Process after Glaucoma Surgery. Pharmaceuticals (Basel). 2023;16(6):898. doi: 10.3390/ph16060898
30. Chacun S, Rezkallah A, Kodjikian L, et al. Glaucoma and conjunctival fibrosis: A case report. J Fr Ophtalmol. 2023;46(10):e361–e364. doi: 10.1016/j.jfo.2023.03.017
31. Yu S, Tam ALC, Campbell R, Renwick N. Emerging Evidence of Noncoding RNAs in Bleb Scarring after Glaucoma Filtration Surgery. Cells. 2022;11(8):1301. doi: 10.3390/cells11081301
32. van Mechelen RJS, Wolters JEJ, Herfs M, et al. Wound Healing Response After Bleb-Forming Glaucoma Surgery With a SIBS Microshunt in Rabbits. Transl Vis Sci Technol. 2022;11(8):29. doi: 10.1167/tvst.11.8.29
33. Dubinsky-Pertzov B, Belkin A. Interventional glaucoma – a shift in the treatment paradigm. Harefuah. 2024;163(5):298–304.
34. Kavitha S, Tejaswini SU, Venkatesh R, Zebardast N. Wound modulation in glaucoma surgery: The role of anti-scarring agents. Indian J Ophthalmol. 2024;72(3):320–327. doi: 10.4103/IJO.IJO_2013_23
35. Khaw PT, Bouremel Y, Brocchini S, Henein C. The control of conjunctival fibrosis as a paradigm for the prevention of ocu lar fibrosis-related blindness. “Fibrosis has many friends”. Eye (Lond). 2020;34(12):2163–2174. doi: 10.1038/s41433-020-1031-9
36. Qin M, Yu-Wai-Man C. Glaucoma: Novel antifibrotic therapeutics for the trabecular meshwork. Eur J Pharmacol. 2023;954:175882. doi: 10.1016/j.ejphar.2023.175882
37. van Mechelen RJS, Wolters JE, Bertens CJF, et al. Animal models and drug candidates for use in glaucoma filtration surgery: A systematic review. Exp Eye Res. 2022;217:108972. doi: 10.1016/j.exer.2022.108972
38. Millá E, Ventura-Abreu N, Vendrell C, et al. Differential Gene and Protein Expression of Conjunctival Bleb Hyperfibrosis in Early Failure of Glaucoma Surgery. Int J Mol Sci. 2023;24(15):11949. doi: 10.3390/ijms241511949
39. Belousova NY, Poltanova TI. Possibilities of using cytostatics in ophthalmology. Kazan Medical Journal. 2019;100(4):673– 679 (In Russ.).
40. Wang Y, Xu Z, Li W, et al. A graphene-Ag based near-infrared defined accurate anti-scarring strategy for ocular glaucoma surgery. Biomater Sci. 2022;10(5):1281–1291. doi: 10.1039/d1bm01614h
41. van Mechelen RJS, Wolters JEJ, Fredrich S, et al. A Degradable Sustained-Release Drug Delivery System for Bleb-Forming Glaucoma Surgery. Macromol Biosci. 2023;23(10):e2300075. doi: 10.1002/mabi.202300075
42. Sugimoto I, Usui S, Okazaki T, et al. Early Three-Dimensional Intrableb Structural Changes in Primary-Open Angle Glaucoma and Exfoliation Glaucoma After Ex-PRESS Surgery. Transl Vis Sci Technol. 2022;11(2):32. doi: 10.1167/tvst.11.2.32
43. Kandarakis SA, Petrou P, Papakonstantinou E, et al. Ocular nonsteroidal inflammatory drugs: where do we stand today? Cutan Ocul Toxicol. 2020;39(3):200–212. doi: 10.1080/15569527.2020.1760876
44. Mastropasqua L, Brescia L, D’Arcangelo F, et al. Topical Steroids and Glaucoma Filtration Surgery Outcomes: An In Vivo Confocal Study of the Conjunctiva. J Clin Med. 2022;11(14):3959. doi: 10.3390/jcm11143959
45. Dahlgren T, Ayala M, Zetterberg M. The impact of topical NSAID treatment on selective laser trabeculoplasty efficacy. Acta Ophthalmol. 2023;101(3):266–276. doi: 10.1111/aos.15276
46. Panagiotis D, Nikolaos D, Dimitrios C, Panagiotis V. Anti-inflammatory treatment after selective laser trabeculoplasty: a systematic review of the literature and meta-analysis of randomized control trials. Arq Bras Oftalmol. 2023;86(5):e20210353. doi: 10.5935/0004-2749.2021-0353
47. Wolters JEJ, van Mechelen RJS, Al Majidi R, et al. History, presence, and future of mitomycin C in glaucoma filtration surgery. Curr Opin Ophthalmol. 2021;32(2):148–159. doi: 10.1097/ICU.0000000000000729
48. Ioannou N, Luo J, Qin M, et al. 3D-printed long-acting 5-fluo-rouracil implant to prevent conjunctival fibrosis in glaucoma. J Pharm Pharmacol. 2023;75(2):276–286. doi: 10.1093/jpp/rgac100
49. Bell K, de Padua Soares Bezerra B, Mofokeng M, et al. Learning from the past: Mitomycin C use in trabeculectomy and its application in bleb-forming minimally invasive glaucoma surgery. Surv Ophthalmol. 2021;66(1):109–123. doi: 10.1016/j.survophthal.2020.05.005
50. Wolters JEJ, van Mechelen RJS, Al Majidi R, et al. History, presence, and future of mitomycin C in glaucoma filtration surgery. Curr Opin Ophthalmol. 2021;32(2):148–159. doi: 10.1097/ICU.0000000000000729
51. Sonntag SR, Gniesmer S, Gapeeva A, et al. Zinc Oxide Tetrapods Modulate Wound Healing and Cytokine Release In Vitro-A New Antiproliferative Substance in Glaucoma Filtering Surgery. Life (Basel). 2022;12(11):1691. doi: 10.3390/life12111691
52. Kwon S, Kim SH, Khang D, Lee JY. Potential Therapeutic Usage of Nanomedicine for Glaucoma Treatment. Int J Nanomedicine. 2020;15:5745–5765. doi: 10.2147/IJN.S254792
53. Urbonavičiūtė D, Buteikienė D, Janulevičienė I. A Review of Neovascular Glaucoma: Etiology, Pathogenesis, Diagnosis, and Treatment. Medicina (Kaunas). 2022;58(12):1870. doi: 10.3390/medicina58121870
54. Dumbrăveanu L, Cușnir V, Bobescu D. A review of neovascular glaucoma. Etiopathogenesis and treatment. Rom J Ophthalmol. 2021;65(4):315–329. doi: 10.22336/rjo.2021.66
55. Andrés-Guerrero V, Perucho-González L, García-Feijoo J, et al. Current Perspectives on the Use of Anti-VEGF Drugs as Adjuvant Therapy in Glaucoma. Adv Ther. 2017;34(2):378–395. doi: 10.1007/s12325-016-0461-z
56. Shao T, Li X, Ge J. Target drug delivery system as a new scarring modulation after glaucoma filtration surgery. Diagn Pathol. 2011;6:64. doi: 10.1186/1746-1596-6-64
57. Zhong H, Sun G, Lin X, et al. Evaluation of pirfenidone as a new postoperative antiscarring agent in experimental glaucoma surgery. Invest Ophthalmol Vis Sci. 2011;52(6):3136–3142. doi: 10.1167/iovs.10-6240
58. Xiao YQ, Liu K, Shen JF, et al. SB-431542 inhibition of scar formation after filtration surgery and its potential mechanism. Invest Ophthalmol Vis Sci. 2009;50(4):1698–1706. doi: 10.1167/iovs.08-1675
59. Park HY, Kim JH, Park CK. VEGF induces TGF-β1 expression and myofibroblast transformation after glaucoma surgery. Am J Pathol. 2013;182(6):2147–2154. doi: 10.1016/j.aj-path.2013.02.009
Review
For citations:
Bilalov E.N., Bakhriddinova F.A., Bilalov B.E., Oripov O.I. Current trends in the management of reparative processes after glaucoma surgery: A literature review (Part 1). The EYE GLAZ. 2025;27(3):238-247. (In Russ.) https://doi.org/10.33791/2222-4408-2025-3-238-247