Scleral gas permeable contact lenses as a possible way of visual rehabilitation of patients with age-related macular degeneration
https://doi.org/10.33791/2222-4408-2019-1-33-40
Abstract
Low visual acuity, loss of the central visual field, metamorphopsia, distortion of lines and decreased contrast sensitivity cause reduced quality of vision in patients with age-related macular degeneration (AMD). Currently existing methods of visual rehabilitation for patients with AMD, such as telescopic intraocular and scleral lenses, are functionally and cosmetically unacceptable. The use of intraocular telescopic lenses is limited by the high risk of postoperative complications, low functional parameters, as well as by difficult ophthalmoscopy and lasting adaptation of patients. Telescopic scleral lenses have а low resolution, contain parts impermeable to oxygen and require wearing special switching glasses. However, scleral lenses have potential in developing an optimal method for vision correction in patients with AMD due to the presence of following advantages: wide optical zone, gas permeability, correction of refractive astigmatism in presbyopic patients and alleviation of dry eye symptoms. In conclusion, further clinical research is required to develop a method for improving the quality of vision in patients with AMD by using scleral lenses with an objective test for evaluating the effectiveness of correction – the 3D computer-automated threshold Amsler grid test (3D-CTAG).
About the Authors
A. V. MyagkovRussian Federation
Med.Sc.D., Professor, Director
63B, bld. 4 Mikhalkovskaya, Moscow, 125438, Russian Federation
M. A. Kovalevskaya
Russian Federation
Med.Sc.D., Professor, Head of the Ophthalmology Department
10 Studencheskaya st., Voronezh, 394036, Russian Federation
O. A. Pererva
Russian Federation
Clinical resident
63B, bld. 4 Mikhalkovskaya, Moscow, 125438, Russian Federation
References
1. Coleman H.R. et al. Age-related macular degeneration. The Lancet. 2008;372(9652):1835-1845. doi:10.1016/S0140-6736(08)61759-6
2. Wong W.L. et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. The Lancet Global Health. 2014;2(2):e106-e116. doi:10.1016/S2214-109X(13)70145-1
3. Bourne R.A. et al. Causes of vision loss worldwide, 1990-2010: a systematic analysis. The Lancet Glo-bal Health. 2013;1(6):e339-e349. doi:10.1016/S2214-109X(13)70113-X
4. Roh M. et al. Visual acuity and contrast sensitivity are two important factors affecting vision-related quality of life in advanced age-related macular degeneration. PloS One. 2018;13(5). e0196481. doi: 10.1371/journal.pone.0196481
5. Xu K. et al. Metamorphopsia and vision-related quality of life among patients with age-related macular dege-neration. Can J Ophthalmol. 2018; 53(2):168-172. doi: 10.1016/j.jcjo.2017.08.006
6. Owsley C., Sloane М.Е. Contrast sensitivity, acuity and the perception of real world targets. Br J Ophthalmol. 1987;71:791–796.
7. Schmidt-Erfurth U. et al. Efficacy and safety of monthly versus quarterly ranibizumab treatment in neovascular age-related macular degeneration: the EXCITE stu-dy. Ophthalmology. 2011;118(5):831-839. doi: 10.1016/j.ophtha.2010.09.004
8. Mitchell P. et al. Ranibizumab (Lucentis) in neovascular age-related macular degeneration: evidence from clinical trials. Br J Ophthalmol. 2010;94(1):2-13. doi:10.1136/bjo.2009.159160
9. Kaiser P.K. et al. Ranibizumab for predominantly clas-sic neovascular age-related macular degeneration: subgroup analysis of first-year ANCHOR results. Am J Ophthalmol. 2007;144(6):850-857. doi: 10.1016/j.ajo.2007.08.012
10. Holz F.G. et al. Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration. Am J Ophthalmol. 2007;143(3):463-472. e2.
11. Sunness J.S., Applegate C.A. Long-term follow-up of fixation patterns in eyes with central scotomas from geographic atrophy that is associated with age-related macular degeneration. Am J Ophthalmol. 2005;140(6):1085-1093. doi:10.1136/bjo.2009.159160/
12. Fletcher D.C. Scanning laser ophthalmoscope macular perimetry and applications for low vision rehabilitation clinicians. Ophthamol Clin North Am. 1994;7:257-265.
13. Cheung S.H., Legge G.E. Functional and cortical adap-tations to central vision loss. Vis Neuroscience. 2005;22(2):187–201.
14. Pedanova E.K. The value of microperimetry as a method for evaluating the effectiveness of treatment in patients with very low visual functions. Modern Technology in Ophthalmology. 2014;1:81-82. (In Russ.)
15. Kovalevskaya M.A., Bogatyreva E.S., Milyutkina S.O. Combined functional diagnostics of Best dystrophy. Russian medical journal. Clinical Ophthalmology. 2013:4:181-184. (In Russ.)
16. Amsler M. L’examen qualitatif de la fonction maculaire. Ophthalmologica. 1947;114:248-261.
17. Bolz M. et al. Morphological and functional analysis of the loading regimen with intravitreal ranibizumab in neovascular age-related macular degeneration. Br J Ophthalmol. 2010;94(2):185-189. doi: 10.1136/bjo.2008.143974
18. Kovalevskaya M. et al. 3D-CTAG testing of functional and structural changes of the macula. AOVS. 2016;4(2):00103. doi: 10.15406/aovs.2016.04.00103
19. Grzybowski A. et al. Intraocular lenses in age-related macular degeneration. Graefe’s Arch Clin Exp Ophthalmol. 2017;255(9):1687-1696. doi:10.1007/s00417-017-3740-8
20. Arianpour A. et al. Wearable telescopic contact lens. Applied optics. 2015;54(24):7195-7204. doi: 10.1364/AO.54.007195
21. Orzalesi N. et al. The IOL-Vip System: a double intraocular lens implant for visual rehabilitation of patients with macular disease. Ophthalmology. 2007;114(5):860-865. doi: 10.1016/j.ophtha.2007.01.005
22. Agarwal A. et al. Mirror telescopic intraocular lens for age-related macular degeneration: design and preli-minary clinical results of the Lipshitz macular implant. J Cataract Refract Surg. 2008; 34(1):87-94. doi:10.1016/j.jcrs.2007.08.031
23. Roberts B. et al. Higher order aberrations induced by soft contact lenses in normal eyes with myopia. Eye & Contact Lens. 2006;32(3):138-142. doi:10.1097/01.icl.0000195570.73454.a5
24. Myagkov A.V., Ignatova N.V. Our experience in optical correction of radial keratotomy consequences by scleral lenses. Clinical cases. Russian Ophthalmological Journal. 2017;10 (2):92-96. (In Russ.) doi: 10.21516/2072-0076-2017-10-2-92-96
25. Belda-Salmerón L., Drew T., Hall L., Wolffsohn J.S. Objective analysis of contact lens fit. Cont Lens Anterior Eye. 2015;38(3):163-167.
26. Young C., Kading D.L., Brujic M. Strategies for Success with Specialty Multifocal Contact Lenses. Go beyond the rack to customize lenses to meet the needs of your presbyopic patients. Review of Cornea and Contact Lenses. 2013.
27. Van der Worp Eef. A Guide to scleral lens fitting. 2015.
28. Arianpour A. et al. Wearable telescopic contact lens. Applied Optics. 2015;54(24):7195-7204. doi: 10.1364/AO.54.007195
29. Isen A. Feinbloom miniscope contact lens. Encyclopedia of Contact Lens Practice. 1963;13:53-55.
30. Schuster G.M. et al. Wink-controlled polarization-switched telescopic contact lenses. Applied Optics. 2015;54(32):9597-9605. doi: 10.1364/AO.54.009597
31. Butt T. et al. Simulation contact lenses for AMD health state utility values in NICE appraisals: A different reality. Br J Ophthalmol. 2015;99(4):540-544. doi: 10.1136/bjophthalmol-2014-305802
32. Jivrajka R.V. et al. Quantitative analysis of central visual field defects in macular edema using three-dimensional computer-automated threshold Amsler grid testing. Graefe’s Arch Clin Exp Ophthalmol. 2009;247(2):165-170. doi:10.1007/s00417-008-0971-8
Review
For citations:
Myagkov A.V., Kovalevskaya M.A., Pererva O.A. Scleral gas permeable contact lenses as a possible way of visual rehabilitation of patients with age-related macular degeneration. The EYE GLAZ. 2019;21(1 (125)):33-40. (In Russ.) https://doi.org/10.33791/2222-4408-2019-1-33-40