

Current perspectives on the mechanisms of visual memory: a literature review
https://doi.org/10.33791/2222-4408-2025-1-43-53
Abstract
Introduction. Memory is at the core of all intellectual activities; no cognitive function can be performed without its involvement. However, the mechanisms underlying its function remain incompletely understood. Objective: to review publications on current perspectives regarding the mechanisms of human visual memory and identify promising directions for future research in this area. Materials and methods. A literature analysis was conducted based on 58 publications from the last 15 years, sourced from Google Scholar, PubMed, eLibrary, and Crossref Metadata Search. Results. This review highlights the distinctions between longterm and working visual memory based on their functional properties, which rely on different neural substrates. Working memory mechanisms are associated with the activity of the occipital and parietal cortices, while long-term memory is linked to the medial temporal lobe and hippocampus. Traditionally, the organization of long-term visual memory has been modeled as a passive storage system, retaining visual information for extended periods. However, contemporary models of working visual memory describe it as a cognitive mechanism for retrieving necessary information from long-term memory and applying it to functional tasks. Both models emphasize the interaction of hypercolumn neurons, various layers of the visual cortex, and cerebellar structures in evaluating color, spatial localization, and other visual characteristics. Conclusion. Despite extensive and multifaceted research in recent years, many aspects of visual memory remain insufficiently explored. One promising direction for future studies is investigating the functioning of visual memory across different age groups in patients with ophthalmic pathology, including conditions affecting the central visual processing system.
About the Authors
S. I. RychkovaRussian Federation
Svetlana I. Rychkova, Dr. Sci. (Med.), Ophthalmologist, Leading Researcher at the “Vision Systems” Laboratory of the Kharkevich Institute for Information Transmission Problems; Associate Professor at the Department of Eye Diseases of the Medico-biological University of Innovation and Continuing Education of Russian State Research Center – Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency
19, Bolshoy Karetny Lane, Moscow, 127051
N. I. Kurysheva
Russian Federation
Natalia I. Kurysheva, Dr. Sci. (Med.), Professor, Ophthalmologist, Head of the Department of Eye Diseases
15, Gamalei Str., Moscow, 123098
A. B. Laver
Russian Federation
Alexander B. Laver, Ophthalmologist, Resident at the Department of Eye Diseases
15, Gamalei Str., Moscow, 123098
A. I. Tolmacheva
Russian Federation
Alina I. Tolmacheva, Student
1, Ostrovityanova Str., Moscow, 117513
References
1. Nurova MA, Mamedova LV. Classification of types of memory, their characteristics. Bulletin of Science and Education. 2020;21(99):55–58. (In Russ.)
2. Luria AR. A Little Book about a Big Memory. Moscow: Moscow State University Publ., 1968. (In Russ.)
3. Korsakova NK. The neuropsychological factor: the legacy of AR Luria and the challenges of neuropsychology development. Bulletin of the Moscow University. Psychology. 2012;2:8– 15. (In Russ.)
4. Alekseeva MG, Zubov AI, Novikov MYu. Artificial intelligence in medicine. International Research Journal. 2022;7(121):10– 13. (In Russ.) doi: 10.23670/IRJ.2022.121.7.038
5. Zakharov IM, Ismatullina VI, Malykh SB. Short-term visual memory: phenomenology and mechanisms. Theoretical and experimental psychology. 2014;7(4):79–89. (In Russ.)
6. Luck SJ, Hollingworth A. Visual memory. Oxford University Press, 2008. 7. Bancroft T, Servos P. Distractor frequency influences performance in vibrotactile working memory. Experimental Brain Research. 2011;208(4):529–532. doi: 10.1007/s00221-010-2501-2
7. Ninio J. Testing sequence effects in visual memory: Clues for a structural model. Acta Psychologica. 2004;116:263–283. doi: 10.1016/j.actpsy.2004.04.001
8. Ninio J. Au coer de la memoir. Paris: Odile Jacob, 2011.
9. Schurgin MW. Visual memory, the long and the short of it: A review of visual working memory and long-term memory. Atten Percept Psychophys. 2018;80(4):1035–1056. doi: 10.3758/s13414-018-1522-y
10. Tomaiuolo F, Bivona U, Lerch JP, et al. Memory and anatomical change in severe non missile traumatic brain injury: 1–8 years follow-up. Brain Res Bull. 2012;87(4–5):373–382. doi: 10.1016/j.brainresbull.2012.01.008
11. Vogt S, Magnussen S. Long-term memory for 400 pictures on a common theme. Exp Psychol. 2007;54(4):298–303. doi: 10.1027/1618-3169.54.4.298
12. de Freitas Cardoso MG, Faleiro RM, de Paula JJ, et al. Cognitive impairment following acute mild traumatic brain injury. Front Neurol. 2019;10:198. doi: 10.3389/fneur.2019.00198
13. Wyble B, Potter MC, Bowman H, et al. Attentional episodes in visual perception. J Exp Psychol Gen. 2011;140(3):488–505. doi: 10.1037/a0023612
14. Lucchesi W, Mizuno K, Giese KP. Novel insights into CaMKII function and regulation during memory formation. Brain Res Bull. 2011;85(1–2):2–8. doi: 10.1016/j.brainresbull.2010.10.009
15. Klochkova OI. Evaluation of short-term visual memory and thinking parameters depending on gender using computer games. Science and modernity. 2010;4(1):297–303. (In Russ.)
16. Rensink RA. Limits to the usability of iconic memory. Front Psychol. 2014;5:971. doi: 10.3389/fpsyg.2014.00971
17. Fukuda K, Woodman GF. Visual working memory buffers information retrieved from visual long-term memory. Proceedings of the National Academy of Sciences. 2017;114(20):5306– 5311. doi: 10.1073/pnas.1617874114
18. Qian J, Zhang, K, Liu, S, et al. The transition from feature to object: Storage unit in visual working memory depends on task difficulty. Mem Cognit. 2019;47(8):1498–1514. doi: 10.3758/s13421-019-00956-y
19. Lin YT, Kong G, Fougnie D. Object-based selection in visual working memory. Psychon Bull Rev. 2021;28(6):1961–1971. doi: 10.3758/s13423-021-01971-4
20. Norman Y, Yeagle EM, Khuvis S, et al. Hippocampal sharp-wave ripples linked to visual episodic recollection in humans. Science. 2019;365(6454):eaax1030. doi: 10.1126/science.aax1030
21. Cooper RA, Ritchey M. Cortico-hippocampal network connections support the multidimensional quality of episodic memory. Elife. 2019;8:e45591. doi: 10.7554/eLife.45591
22. Baddeley AD, Hitch G. Working memory. Psychology of learning and motivation. Academic press. 1974;8:47–89. doi: 10.1016/S0079-7421(08)60452-1
23. Cowan N. What are the differences between long-term, short-term, and working memory? Progress in brain research. 2008;169:323–338. doi: 10.1016/S0079-6123(07)00020-9
24. Awh E, Barton B, Vogel EK. Visual working memory represents a fixed number of items regardless of complexity. Psychological science. 2007;18(7):622–628. doi: 10.1111/j.1467-9280.2007.01949.x
25. Vogel EK, Woodman GF, Luck SJ. Storage of features, conjunctions and objects in visual working memory. Journal of experimental psychology: human perception and performance. 2001;27(1):92–114. doi: 10.1037//0096-1523.27.1.92
26. Baddeley A. Working memory: looking back and looking forward. Nat Rev Neurosci. 2003;4(10):829–839. doi: 10.1038/nrn1201
27. Ma WJ, Husain M, Bays PM. Changing concepts of working memory. Nat Neurosci. 2014;17(3):347–356. doi: 10.1038/nn.3655
28. Hollingworth A, Richard AM, Luck SJ. Understanding the function of visual short-term memory: transsaccadic memory, object correspondence, and gaze correction. Journal of Experimental Psychology: General. 2008;137(1):163–181. doi: 10.1037/0096-3445.137.1.163.
29. Hollingworth A, Matsukura M, Luck SJ. Visual working memory modulates rapid eye movements to simple onset targets. Psychological Science. 2013;24(5):790–796. doi: 10.1177/0956797612459767
30. Martarelli CS, Mast FW. Eye movements during long-term pictorial recall. Psychol Res. 2013;77(3):303–309. doi: 10.1007/s00426-012-0439-7
31. Choi H, Scholl BJ. Perceiving causality after the fact: postdiction in the temporal dynamics of causal perception. Perception. 2006;35(3):385–399. doi: 10.1068/p5462
32. Hillstrom A, Patel D. How unitary is rapid scene gist processing? An individual differences approach. Journal of Vision. 2013;13(9):1046–1046. doi: 10.1167/13.9.1046
33. Leclercq V, Le Dantec CC, Seitz AR. Encoding of episodic information through fast task-irrelevant perceptual learning. Vision Res. 2014;99:5–11. doi: 10.1016/j.visres.2013.09.006
34. Bancroft T, Servos P. Distractor frequency influences performance in vibrotactile working memory. Exp Brain Res. 2011;208(4):529–532. doi: 10.1007/s00221-011-2501-2
35. Ferrari C, Cattaneo Z, Oldrati V, et al. TMS over the cerebellum interferes with short-term memory of visual sequences. Sci Rep. 2018;8(1):6722. doi: 10.1038/s41598-018-25151-y
36. Brissenden JA, Somers DC. Cortico-cerebellar networks for visual attention and working memory. Curr Opin Psychol. 2019;29:239–247. doi: 10.1016/j.copsyc.2019.05.003
37. van Es DM, van der Zwaag W, Knapen T. Topographic maps of visual space in the human cerebellum. Curr Biol. 2019;29(10):1689–1694.e3. doi: 10.1016/j.cub.2019.04.012
38. Cechetti F, Pagnussat AS, Worm PV, et al. Chronic brain hypoperfusion causes early glial activation and neuronal death, and subsequent long-term memory impairment. Brain Res Bull. 2012;87(1):109–116. doi: 10.1016/j.brainresbull.2011.10.006
39. Viñas-Guasch N, Ng TH, Heng JG, et al. Cerebellar transcranial magnetic stimulation (TMS) impairs visual working memory. Cerebellum. 2023;22(3):332–347. doi: 10.1007/s12311-022-01396-2
40. Deviaterikova A, Kasatkin V, Malykh S. The role of the cerebellum in visual-spatial memory in pediatric posterior fossa tumor survivors. Cerebellum. 2023;22:1–7. doi: 10.1007/s12311-023-01525-5
41. Riva D, Giorgi C. The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain. 2000;123(5):1051–1061. doi: 10.1093/brain/123.5.1051
42. Besson G, Ceccaldi M, Didic M, et al. The speed of visual recognition memory. Visual Cognition. 2012;20(10):1131–1152. doi: 10.1080/13506285.2012.724034
43. Rugg MD, Curran T. Event-related potentials and recognition memory. Trends Cogn Sci. 2007;11(6):251–257. doi: 10.1016/j.tics.2007.04.004
44. Owen AM, Sahakian BJ, Semple J, et al. Visuo-spatial shortterm recognition memory and learning after temporal lobe excisions, frontal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia. 1995;33(1):1–24. doi: 10.1016/0028-3932(94)00098-a
45. Yonelinas AP, Otten LJ, Shaw KN, et al. Separating the brain regions involved in recollection and familiarity in recognition memory. Journal of Neuroscience. 2005;25(11):3002–3008. doi: 10.1523/JNEUROSCI.5295-04.2005
46. Lai HC, Chien SHL, Kuo WY, et al. Visual short-term memory for abstract patterns: Effects of symmetry, element connectedness, and probe quadrant. Journal of Vision. 2010;9:593. doi: 10.1167/9.8.593
47. Diamantopoulou S, Poom L, Klaver P, et al. Visual working memory capacity and stimulus categories: a behavioral and electrophysiological investigation. Exp Brain Res. 2011;209(4):501–513. doi: 10.1007/s00221-011-2536-z
48. Labruna L, Fernández-del-Olmo M, Landau A, et al. Modulation of the motor system during visual and auditory language processing. Exp Brain Res. 2011;211(2):243–250. doi: 10.1007/s00221-011-2678-z
49. Scarpina F, Tagini S. The Stroop Color and Word Test. Front Psychol. 2017;8:557. doi: 10.3389/fpsyg.2017.00557
50. Kozhukhov SA. A model of temporal coding of stimulus orientation in the responses of neurons of the primary visual cortex. Biophysics. 2018;63(3):544–560. (In Russ.)
51. Yakovlev V, Bernacchia A, Orlov T, et al. Multi-item working memory – a behavioral study. Cerebral Cortex. 2005;15(5):602– 615. doi: 10.1093/cercor/bhh161
52. Perone S, Spencer JP, Schöner G. A dynamic field theory of visual recognition in infant looking tasks. Proceedings of the Twenty-Ninth Annual Cognitive Science Society. 2007;29(29):1391– 1396. doi: 10.1007/uc/item/47853579
53. Thelen E, Schöner G, Scheier C, et al. The dynamics of embodiment: a field theory of infant perseverative reaching. Behav Brain Sci. 2001;24(1):1–86. doi: 10.1017/s0140525x01003910
54. Schneegans S, Bays PM. Neural Architecture for Feature Binding in Visual Working Memory. J Neurosci. 2017;37(14):3913– 3925. doi: 10.1523/JNEUROSCI.3493-16.2017
55. Dutton GN, Jacobson LK. Cerebral visual impairment in children. Seminars in Neonatology. 2001;6(6):477–485. doi: 10.1053/siny.2001.0078
56. Hymowitz MB, Huynh L, Wong R, et al. Comparison of Visual Memory in Patients with Decreased Visual Acuity. Investigative Ophthalmology & Visual Science. 2007;48(13):3544–3544.
57. Gupta P, Shah P, Gutnick SG, et al. Development of visual memory capacity following early-onset and extended blindness. Psychological Science. 2022;33(6):847–858. doi: 10.1177/09567976211056664
Review
For citations:
Rychkova S.I., Kurysheva N.I., Laver A.B., Tolmacheva A.I. Current perspectives on the mechanisms of visual memory: a literature review. The EYE GLAZ. 2025;27(1):43-53. (In Russ.) https://doi.org/10.33791/2222-4408-2025-1-43-53