

Clinical outcomes with a novel extended depth of focus intraocular lens Tecnis Symfony
https://doi.org/10.33791/2222-4408-2023-4-294-301
Abstract
Relevance. Some of the most current intraocular lenses (IOL) are lenses with an extended depth of focus. Lenses of this type allow you to reduce dependence on glasses by distributing light energy to long-range and focus at medium distance, without losing the quality of vision. Studies that analyze the results of implantation of this type of lens are few. Purpose: to evaluate the clinical outcomes of extended depth of focus (EDOF) intraocular lens (IOL) implantation. Materials and methods. Prospective randomized study enrolled 61 patients of 79 eyes (18 to 86 years) undergone uncomplicated phacoemulsifi cation with EDOF IOL Tecnis Symfony (USA) implantation. The study was conducted from November 2020 through November 2022. Uncorrected near visual acuity (UNVA); corrected near visual acuity (CNVA) and uncorrected and corrected distance visual acuity (UDVA and CDVA), monocular defocus curve and refractive outcomes were evaluated during a 3-month period. When calculating the IOL, the target spherical equivalent was –0.35 ± 0.11 D. Results. In the postoperative period 3 months, visual acuity were 0.7 or better in 82.4% UCDVA, 100% CDVA and 50% UCNVA. 3 months after surgery, UDVA and UNVA at 40 cm averaged 0.85 ± 0.15 and 0.69 ± 0.18, respectively. CDVA and CNVA at 40 cm was 0.98 ± 0.04 and 0.8 ± 0.14, respectively. A total of 85.7% of eyes achieved postoperative visual acuity about 0.5 for the range of defocus levels between +1.00 and −1.50 D. Conclusions. Cataract surgery with Tecnis Symfony EDOF IOL implantation provide functional levels of visual acuity in distance, intermediate zones. The near visual performance with this IOL might be signifi cantly enhanced using a micro-monovision approach
About the Authors
N. S. AnisimovaRussian Federation
Natalia S. Anisimova, Cand. Sci. (Med.), Chief Physician, assistant at the Department of Eye Diseases
20/1, Delegatskaya Str., Moscow, 127473
10/1, Poliny Osipenko Str., Moscow, 123007
S. I. Anisimov
Russian Federation
Sergey I. Anisimov, Dr. Sci. (Med.), Scientifi c Director, Professor of the Department of Eye Diseases
20/1, Delegatskaya Str., Moscow, 127473
10/1, Poliny Osipenko Str., Moscow, 123007
M. I. Danilchenko
Russian Federation
Marina I. Danilchenko, Ophthalmologist, Postgraduate Student of the Department
of Eye Diseases
20/1, Delegatskaya Str., Moscow, 127473
8, Vokzalnaya Str., Belaya Kalitva, 347045
References
1. Kamiya K., Hayashi K., Shimizu K. et al. Multifocal intraocular lens explantation: a case series of 50 eyes. American Journal of Ophthalmology. 2014;158(2):215–220 https://doi.org/10.1016/j.ajo.2014.04.010
2. Pedrotti E., Carones F., Aiello F. et al. Comparative analysis of visual outcomes with 4 intraocular lenses: monofocal, multifocal, and extended range of vision. Journal of Cataract & Refractive Surgery. 2018;44(2):156–167. https://doi.org/10.1016/j.jcrs.2017.11.011
3. Savini G., Schiano-Lomoriello D., Balducci N., Barboni P. Visual performance of a new extended depth-of-focus intraocular lens compared to a distance-dominant diffractive multifocal intraocular lens. Journal of Refractive Surgery. 2018;34(4):228– 235. https://doi.org/10.3928/1081597x-20180125-01
4. de Medeiros A.L., de Araújo Rolim A.G., Motta A.F.P. et al. Comparison of visual outcomes after bilateral implantation of a diffractive trifocal intraocular lens and blended implantation of an extended depth of focus intraocular lens with a diffractive bifocal intraocular lens. Clinical Ophthalmology (Auckland, NZ). 2017;11:1911. https://doi.org/10.2147/opth.s145945
5. Ruiz-Mesa R., Abengózar-Vela A., Ruiz-Santos M. A comparative study of the visual outcomes between a new trifocal and an extended depth of focus intraocular lens. European Journal of Ophthalmo logy. 2018;28(2):182–187. https://doi.org/10.5301/ejo.5001029
6. Alió J.L., Plaza-Puche A.B., Montalban R., Javaloy J. Visual outcomes with a single-optic accommodating intraocular lens and a low-addition-power rotational asymmetric multifocal intraocular lens. Journal of Cataract & Refractive Surgery. 2012;38(6):978–985. https://doi.org/10.1016/j.jcrs.2011.12.033
7. Camps V.J., Tolosa A., Piñero D.P. et al. In vitro aberrometric assessment of a multifocal intraocular lens and two extended depth of focus IOLs. Journal of Ophthalmology. 2017;7095734. https://doi.org/10.1155/2017/7095734
8. Chae S.H., Son H.S., Khoramnia R. et al. Laboratory evaluation of the optical properties of two extended-depth-of-focus intraocular lenses. BMC Ophthalmology. 2020;20(1):1–7. https://doi.org/10.1186/s12886-020-1332-6
9. Rocha K.M., Vabre L., Chateau N., Krueger R.R. Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator. Journal of Cataract & Refractive Surgery. 2009;35(11):1885–1892. https://doi.org/10.1016/j.jcrs.2009.05.059
10. Dick H.B., Piovella M., Vukich J. et al. Prospective multicenter trial of a small-aperture intraocular lens in cataract surgery. Journal of Cataract & Refractive Surgery. 2017;43(7):956–968. https://doi.org/10.1016/j.jcrs.2017.04.038
11. Grabner G., Ang R.E., Vilupuru S. The small-aperture IC-8 intraocular lens: a new concept for added depth of focus in cataract patients. American Journal of Ophthalmology. 2015;160(6):1176–1184. https://doi.org/10.1016/j.ajo.2015.08.017
12. Pedrotti E., Chierego C., Talli P.M. et al. Extended depth of focus versus monofocal IOLs: objective and subjective visual outcomes. Journal of Refractive Surgery. 2020;36(4):214–222. https://doi.org/10.3928/1081597X-20200212-01
13. Schojai M., Schultz T., Jerke C. et al. Prospective randomized comparative trial: visual performance comparison of two enhanced depth of focus IOLs-symfony and IC-8. Journal of Cata ract and Refractive Surgery. 2020. https://doi.org/10.1097/j.jcrs.0000000000000068
14. Auffarth G.U., Moraru O., Munteanu M. et al. European, multicenter, prospective, non-comparative clinical evaluation of an extended depth of focus intraocular lens. Journal of Refractive Surgery. 2020;36(7):426–4342. https://doi.org/10.3928/1081597X-20200603-01
15. Schojai M., Schultz T., Jerke C. et al. Visual performance comparison of 2 extended depth-of-focus intraocular lenses. Journal of Cataract & Refractive Surgery. 2020;46(3):388–393. https://doi.org/10.1097/j.jcrs.0000000000000068
16. Bellucci R., Cargnoni M., Bellucci C. Clinical and aberrometric evaluation of a new extended depth-of-focus intraocular lens based on spherical aberration. Journal of Cataract & Refractive Surgery. 2019;45(7):919–926. https://doi.org/10.1016/j.jcrs.2019.02.023
17. Giers B.C., Khoramnia R., Varadi D. et al. Functional results and photic phenomena with new extended-depth-of-focus intraocular lens. BMC Ophthalmology. 2019;19(1):1–9. https://doi.org/10.1186/s12886-019-1201-3
18. Cochener B., Boutillier G., Lamard M., Auberger-Zagnoli C. A comparative evaluation of a new generation of diffractive trifocal and extended depth of focus intraocular lenses. Journal of Refractive Surgery. 2018;34(8):507–514. https://doi.org/10.3928/1081597X-20180530-02
19. Steinert R.F., Post Jr C.T., Brint S.F. et al. A prospective, randomized, double-masked comparison of a zonal-progressive multifocal intraocular lens and a monofocal intraocular lens. Ophthalmology. 1992;99(6):853–861. https://doi.org/10.1016/0161-6420(92)31864-0
20. Alfonso J.F., Fernández-Vega L., Amhaz H. et al. Visual function after implantation of an aspheric bifocal intraocular lens. Journal of Cataract & Refractive Surgery. 2009;35(5):885–892. https://doi.org/10.1016/j.jcrs.2009.01.014
21. Cillino S., Casuccio A., Di Pace F. et al. One-year outcomes with new-generation multifocal intraocular lenses. Ophthalmology. 2008;115(9):1508–1516. https://doi.org/10.1016/j.ophtha.2008.04.017
22. Weeber H.A., Piers P.A. Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration. Journal of Refractive Surgery. 2012;28(1):48–52. https://doi.org/10.3928/1081597X-20111103-01
23. Artal P., Manzanera S., Piers P., Weeber H. Visual effect of the combined correction of spherical and longitudinal chromatic aberrations. Optics Express. 2010;18(2):1637–1648. https://doi.org/10.1364/OE.18.001637
24. Domínguez-Vicent A., Esteve-Taboada J.J., Del Águila-Carrasco A.J. et al. In vitro optical quality comparison between the Mini WELL Ready progressive multifocal and the TECNIS Symfony. Graefe’s Archive for Clinical and Experimental Ophthalmology. 2016;254(7):1387–1397. https://doi.org/10.1007/s00417-015-3240-7
25. Esteve-Taboada J.J., Domínguez-Vicent A., Del Águila-Carrasco A.J. et al. Effect of large apertures on the optical quality of three multifocal lenses. J Refract Surg. 2015;31(10):666–676. https://doi.org/10.3928/1081597x-20150928-01
26. Cochener B., Concerto Study Group. Clinical outcomes of a new extended range of vision intraocular lens: International multicenter concerto study. Journal of Cataract & Refractive Surgery. 2016;42(9):1268–1275. https://doi.org/10.1016/j.jcrs.2016.06.033
27. Cochener B. Infl uence of the level of monovision on visual outcome with an extended range of vision intraocular lens. Clinical Ophthalmology (Auckland, NZ). 2018;12:2305. https://doi.org/10.2147/OPTH.S184712
Review
For citations:
Anisimova N.S., Anisimov S.I., Danilchenko M.I. Clinical outcomes with a novel extended depth of focus intraocular lens Tecnis Symfony. The EYE GLAZ. 2023;25(4):294-301. (In Russ.) https://doi.org/10.33791/2222-4408-2023-4-294-301