Preview

The EYE GLAZ

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

The method for determining intraocular pressure according to keratotopographic indicators

https://doi.org/10.33791/2222-4408-2023-4-278-285

Abstract

Relevance. In most countries of the world, applanation tonometers remain popular, such as the Maklakov tonometer and the Goldman tonometer. When measuring ophthalmotonus, such tonometers receive IOP values indirectly through the cornea, which certainly introduces its own errors into the measurement results. The creation of methods for measuring IOP different from the currently existing ones is relevant. Purpose: to create a new method for determining intraocular pressure without tonometry, based on the indicators of the individual profi le of the cornea with its parameters, indices and autorefractometry data. Materials and methods. Statistical analysis of 16 parameters of a keratotopograph (ALLEGRO Oculyzer, WaveLight Oculyzer II), data of an autorefractometer (TONOREF Nidek device) and data of tonometric intraocular pressure was carried out using a Maklakov tonometer (НГм2-«ОФТ-П») in 500 patients (1000 eyes). Among the sample population there were patients with both emmetropic refraction – 8 eyes (0.8%), and patients with refractive errors 992 eyes (99.2%), among them: 978 eyes (97.8%) had myopic refraction, 14 (1.4%) eyes had isolated refraction with myopic astigmatism. 889 eyes (88.9%) combined myopic refraction with myopic astigmatism. Results. Based on the analysis of keratotopographic parameters, autorefractometry values and tonometric IOP of 500 patients (1000 eyes), we have created a new method for determining intraocular pressure without tonometry, presented in the form of a mathematical model: Pt keratotopographic = 61.9 – 0.06 × SPH – 2.39 × Rf + 0.64 × Rmin – 0.15 × log2 (IVA) – 31.9 × CKI – 0.006 × Thickness. Conclusions. Based on the results obtained for determining IOP without physical interaction with the eye, the mathematical model created by us can be used in cases where the use of any tonometer is impossible.

About the Authors

N. R. Ahmetov
Kazan State Medical University; Republican Clinical Ophthalmological Hospital of the Ministry of Health of the Republic of Tatarstan named after Professor E.V. Adamyuk
Russian Federation

Nail R. Ahmetov, Postgraduate Student of the Ophthalmology, Ophthalmologist

49, Butlerova Str., Kazan, 420012

14, Butlerova Str., Kazan, 420012



A. N. Samoylov
Kazan State Medical University; Republican Clinical Ophthalmological Hospital of the Ministry of Health of the Republic of Tatarstan named after Professor E.V. Adamyuk
Russian Federation

Alexander N. Samoylov, Dr. Sci. (Med.), Professor, Head of the Ophthalmology Department, Chief Specialist

49, Butlerova Str., Kazan, 420012

14, Butlerova Str., Kazan, 420012



V. A. Usov
Kazan State Medical University
Russian Federation

Viktor A. Usov, Cand. Sci. (Med.), Assistant of the Ophthalmology Department

49, Butlerova Str., Kazan, 420012



References

1. Samoylov A.N., Samoylova P.A., Ahmetov N.R. et al. Methods for measuring intraocular pressure: disadvantages and advantages. Ophthalmology Reports. 2022;15(3):63–78. (In Russ.). https://doi.org/10.17816/OV106140

2. National Center for Biotechnology Information. Tonometry. Bader J., Zeppieri M., Havens S.J. StatPearls Publishing; 2023. URL: https://www.ncbi.nlm.nih.gov/books/NBK493225/ (Accessed 26.06.2023).

3. Antonov A.A., Astahov Y.S., Bessmertny A.M. Clinical guidelines. Glaucoma primary open-angle. Ministry of Health of Russian Federation. 2020. (In Russ.) URL: https://cr.minzdrav.gov.ru/schema/96_1 (Accessed 26.06.2023)

4. Bubnova I.A., Asatryan S.V. Biomechanical properties of the cornea and tonometry measurements. Bulletin of Ophthalmology. 2019;135(4):27–32. (In Russ.) https://doi.org/10.17116/oftalma201913504127

5. Jóhannesson G., Hallberg P., Eklund A., Lindén C. Pascal, ICare and Goldmann applanation tonometry--a comparative study. Acta Ophthalmol. 2008;86(6):614–621. https://doi.org/10.1111/j.1600-0420.2007.01112.x

6. McCafferty S., Tetrault K., McColgin A. et al. Intraocular pressure measurement accuracy and repeatability of a modifi ed Goldmann prism: multicenter randomized clinical trial. Am J Ophthalmol. 2018;196:145–153. https://doi.org/10.1016/j.ajo.2018.08.051

7. Fukuoka S., Aihara M., Iwase A., Araie M. Intraocular pressure in an ophthalmologically normal Japanese population. Acta Ophthalmol. 2008;86(4):434–439. https://doi.org/10.1111/j.1600-0420.2007.01068.x

8. Shah S., Laiquzzaman M., Mantry S., Cunliffe I. Ocular response analyser to assess hysteresis and corneal resistance factor in low tension, open angle glaucoma and ocular hypertension. Clin Exp Ophthalmol. 2008;36(6):508–513. https:// doi.org/10.1111/j.1442-9071.2008.01828.x

9. Luce D.A. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005;31(1):156–162. https://doi.org/10.1016/j.jcrs.2004.10.044

10. Kynigopoulos M., Schlote T., Kotecha A. et al. Repeatability of intraocular pressure and corneal biomechanical properties measurements by the ocular response analyser. Klin Monbl Augenheilkd. 2008;225(5):357–360. https://doi.org/10.1055/s-2008-1027256

11. Bao F., Huang W., Zhu R. et al. Effectiveness of the Goldmann applanation tonometer, the dynamic contour tonometer, the ocular response analyzer and the Corvis ST in measuring intraocular pressure following FS-LASIK. Curr Eye Res. 2020;45(2):144–152. https://doi.org/10.1080/02713683.2019.1660794

12. Boszczyk A., Kasprzak H., Przeździecka-Dołyk J. Novel method of measuring corneal viscoelasticity using the Corvis ST tonometer. J Clin Med. 2022;11(1):261. https://doi.org/10.3390/jcm11010261

13. Jóźwik A., Kasprzak H., Kozakiewicz A. Corneal buckling

14. du ring applanation and its effect on the air pressure curve in ocular response analyzer. Int J Environ Res Public Health. 2019;16(15):2742. https://doi.org/10.3390/ijerph16152742

15. Polat N., Gunduz A. Effect of cycloplegia on keratometric and biometric parameters in keratoconus. J Ophthalmol. 2016;2016:3437125. https://doi.org/10.1155/2016/3437125

16. Hashemi H., Yekta A., Shokrollahzadeh F. et al. The distribution of keratometry in a population based study. J Curr Ophthalmol. 2021;33(1):17–22. https://doi.org/10.1016/j.joco.2019.06.004

17. KhabazKhoob M., Hashemi H., Yazdani K. et al. Keratometry

18. measurements, corneal astigmatism and irregularity in a normal population: the Tehran Eye Study. Ophthalmic Physiol Opt. 2010;30(6):800–805. https://doi.org/10.1111/j.1475-1313.2010.00732.x

19. Kanellopoulos A.J., Asimellis G. Revisiting keratoconus diagnosis and progression classifi cation based on evaluation of corneal asymmetry indices, derived from Scheimpfl ug imaging in keratoconic and suspect cases. Clin Ophthalmol. 2013;7:1539–1548. https://doi.org/10.2147/OPTH.S44741

20. Mohammadi S.F., Khorrami-Nejad M., Hamidirad M. Posterior corneal astigmatism: a review article. Clin Optom (Auckl). 2019;11:85–96. https://doi.org/10.2147/OPTO.S210721

21. Jethani J., Dave P., Jethani M. et al. The applicability of correction factor for corneal thickness on non-contact tonometer measured intraocular pressure in LASIK treated eyes. Saudi J Ophthalmol. 2016;30(1):25–28. https://doi.org/10.1016/j.sjopt.2015.11.001


Review

For citations:


Ahmetov N.R., Samoylov A.N., Usov V.A. The method for determining intraocular pressure according to keratotopographic indicators. The EYE GLAZ. 2023;25(4):278-285. (In Russ.) https://doi.org/10.33791/2222-4408-2023-4-278-285

Views: 345


ISSN 2222-4408 (Print)
ISSN 2686-8083 (Online)