Preview

The EYE GLAZ

Advanced search

Visualization and assessment of the anterior surface of the cornea by corneal topography (Part II)

https://doi.org/10.33791/2222-4408-2020-3-43-51

Abstract

Goal. To introduce ophthalmologists and optometrists to the basics of corneal topography. Corneal topography is the main method for assessing corneal surface regularity, the violation of which leads to a deterioration in its refractive properties and a decrease in the quality of vision. The first part of the workshop (The EYE GLAZ. 2020 (22), № 2) presented the main types of topography maps and keratometry data. In the second part, considerations are made regarding mastering the skills of capturing high-quality images and choice of color maps for analysis. Topography patterns as well as topographic signs of keratoconus are also discussed. Conclusion. Placido-based corneal topographers are a useful tool for evaluating the anterior corneal surface, fitting contact lenses and diagnosing keratoconus. Slit-scanning topographers, additionally, are capable of corneal pachymetry and analyzing the posterior surface of the cornea, which allows for carrying out a more detailed assessment and diagnosing keratoconus at preclinical stage.

About the Author

G. V. Andrienko
National Myopia Institute
Russian Federation

Gulnara V. Andrienko, Ophthalmologist, Scientific Researcher

Fellow of the International Academy Orthokeratology and Myopia Control (FIAOMC) and the International Association of Contact Lens Educators (FIACLE)



References

1. Balashevich L.I., Kachanov A.B. Clinical corneotopography and aberrometry. Moscow: S. Fyodorov Eye Microsurgery Federal State Institution; 2008. 168 p. (In Russ.)

2. Rabinowitz Y.S., Yang H., Brickman Y., et al. Videokeratography database of normal human corneas. Br. J. Ophthalmol. 1996;80(7):610–616. https://doi.org/10.1136/bjo.80.7.610

3. Bogan S.J., Waring G.O. 3rd, Ibrahim O., Drews C., Curtis L. Classification of normal corneal topography based on computer-assisted videokeratography. Arch. Ophthalmol. 1990;108(7):945–949. https://doi.org/10.1001/archopht.1990.01070090047037

4. Li X., Yang H., Rabinowitz Y.S. Keratoconus: classification scheme based on videokeratography and clinical signs. J. Cataract Refract. Surg. 2009;35(9):1597–1603. https://doi.org/10.1016/j.jcrs.2009.03.050

5. Lebow K. Learning the intricacies of axial and tangential maps. Contact Lens Spectrum. September 1, 1999.

6. Naroo S., et al. Corneal topography in assessing multifocal CL centration. Abstracts. Contact Lens & Anterior Eye. 2018;41S:S47–S80.

7. Oliveira C.M., Ribeiro C., Franco S. Corneal imaging with slit-scanning and Scheimpflug imaging techniques. Clin. Exp. Optom. 2011;94(1):33–42. https://doi.org/10.1111/j.1444-0938.2010.00509.x

8. Walker M. Mapping out corneal topography: understanding the ins and outs of corneal imaging will help you better manage contact lens patients in your practice. Review of Optometry. 2017;154(8):60.

9. Belin M.W., Khachikian S.S. An introduction to understanding elevation-based topography: how elevation data are displayed – a review. Clin. Exp. Ophthalmol. 2009;37(1):14–29. https://doi.org/10.1111/j.1442-9071.2008.01821.x

10. Liu Z., Huang A.J., Pflugfelder S.C. Evaluation of corneal thickness and topography in normal eyes using the Orbscan corneal topography system. Br. J. Ophthalmol. 1999;83(7):774–778. https://doi.org/10.1136/bjo.83.7.774

11. Ambrósio R. Jr, Alonso R.S., Luz A., Coca Velarde L.G. Corneal-thickness spatial profile and corneal-volume distribution: tomographic indices to detect keratoconus. J. Cataract Refract. Surg. 2006;32(11):1851–1859. https://doi.org/10.1016/j.jcrs.2006.06.025

12. Mountford J., Carkeet N., Carney L. Corneal thickness changes during scleral lens wear: effect of gas permeability. Int. Contact Lens Clin. 1994;21(1–2):19–22.

13. Compan V., Oliveira C., Aguilella-Arzo M., et al. Oxygen diffusion and edema with modern scleral rigid gas permeable contact lenses. Invest. Ophthalmol. Vis. Sci. 2014;55(10):6421–6429.

14. Jaynes J., Edrington T., Weissman B. Predicting scleral GP lens entrapped tear layer oxygen tensions. Contact Lens Anterior Eye. 2015;38:44–47.

15. Michaud L., van der Worp E., Brazeau D., et al. Predicting estimates of oxygen transmissibility for scleral lenses. Contact Lens Anterior Eye. 2012;35(6):266–271.

16. Cavas-Martínez F., De la Cruz Sánchez E., Nieto Martínez J., Fernández Cañavate F.J., Fernández-Pacheco D.G. Corneal topography in keratoconus: state of the art. Eye Vis. (Lond.). 2016;3:5. https://doi.org/10.1186/s40662-016-0036-8

17. Maeda N., Klyce S.D., Smolek M.K., Thompson H.W. Automated keratoconus screening with corneal topography analysis. Invest. Ophthalmol. Vis. Sci. 1994;35(6):2749–2757.

18. Calossi A. Corneal asphericity and spherical aberration. J. Refract. Surg. 2007;23(5):505–514.

19. Benes P., Synek S., Petrová S. Corneal shape and eccentricity in population. Coll. Antropol. 2013;37(Suppl 1):117–120.

20. Dingeldein S.A., Klyce S.D., Wilson S.E. Quantitative descriptors of corneal shape derived from computer-assisted analysis of photokeratographs. Refract Corneal Surg. 1989;5(6):372–378.

21. Liu Z., Pflugfelder S.C. Corneal surface regularity and the effect of artificial tears in aqueous tear deficiency. Ophthalmology. 1999;106(5):939–943. https://doi.org/10.1016/S0161-6420(99)00513-8

22. Wahba S.S., Roshdy M.M., Fikry R.R., Abdellatif M.K., Abodarahim A.M. Topographic asymmetry indices: correlation between inferior minus superior value and index of height decentration. J. Ophthalmol. 2018;2018:7875148. https://doi.org/10.1155/2018/7875148

23. Wilson S.E., Lin D.T., Klyce S.D. Corneal topography of keratoconus. Cornea. 1991;10(1):2–8.

24. Rabinowitz Y.S., Rasheed K. KISA% index: a quantitative videokeratography algorithm embodying minimal topographic criteria for diagnosing keratoconus [published correction appears in J. Cataract Refract. Surg. 2000 Apr;26(4)480]. J. Cataract Refract. Surg. 1999;25(10):1327–1335. https://doi.org/10.1016/s0886-3350(99)00195-9

25. Saad A., Gatinel D. Topographic and tomographic properties of forme fruste keratoconus corneas. Invest. Ophthalmol. Vis. Sci. 2010;51(11):5546–5555. https://doi.org/10.1167/iovs.10-5369

26. Holladay J.T. Keratoconus detection using corneal topography. J. Refract. Surg. 2009;25(10 Suppl):S958–S962. https://doi.org/10.3928/1081597X-20090915-11

27. Lindsay R. Quick Guide to the management of keratoconus by Sinjab, Mazen M. New York: Springer, 2012, 151 pages, RRP $194.95. Clin. Exp. Optom. 2013;96(2):254. https://doi.org/10.1111/j.1444-0938.2012.00811.x

28. Khachikian S.S., Belin M.W., Ciolino J.B. Intrasubject corneal thickness asymmetry. J. Refract. Surg. 2008;24(6):606–609. https://doi.org/10.3928/1081597X-20080601-09

29. Du X.L., Chen M., Xie L.X. Correlation of basic indicators with stages of keratoconus assessed by Pentacam tomography. Int. J. Ophthalmol. 2015;8(6):1136–1140. https://doi.org/10.3980/j.issn.2222-3959.2015.06.10


Review

For citations:


Andrienko G.V. Visualization and assessment of the anterior surface of the cornea by corneal topography (Part II). The EYE GLAZ. 2020;22(3(131)):43-51. (In Russ.) https://doi.org/10.33791/2222-4408-2020-3-43-51

Views: 5133


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2222-4408 (Print)
ISSN 2686-8083 (Online)