Preview

The EYE ГЛАЗ

Расширенный поиск

Визуализация и оценка передней поверхности роговицы с помощью видеокератотопографии (часть II)

https://doi.org/10.33791/2222-4408-2020-3-43-51

Полный текст:

Содержание

Перейти к:

Аннотация

Цель. Ознакомить врачей-офтальмологов и оптометристов с основами корнеотопографии  – важным методом оценки регулярности поверхности роговицы, нарушение которой приводит к ухудшению преломляющих свойств роговицы и снижению качества зрения. В первой части практикума (The EYE ГЛАЗ. 2020 (22), № 2) были представлены основные типы топографических карт и кератометрические данные. Во второй части предложены рекомендации по приобретению навыков получения качественных снимков, выбору цветовых карт для анализа, топографические паттерны в  норме и при патологии, а также топографические признаки кератоконуса. Заключение. Устройства на основе диска Placido  – полезный инструмент для оценки передней поверхности роговицы, подбора контактных линз и диагностики кератоконуса. Топографы на основе щелевого сканирования дополнительно дают представление о пахиметрии и задней поверхности роговицы, что позволяет провести экспертную оценку в диагностике кератоконуса на доклинической стадии.

Для цитирования:


Андриенко Г.В. Визуализация и оценка передней поверхности роговицы с помощью видеокератотопографии (часть II). The EYE ГЛАЗ. 2020;22(3(131)):43-51. https://doi.org/10.33791/2222-4408-2020-3-43-51

For citation:


Andrienko G.V. Visualization and assessment of the anterior surface of the cornea by corneal topography (Part II). The EYE GLAZ. 2020;22(3(131)):43-51. (In Russ.) https://doi.org/10.33791/2222-4408-2020-3-43-51

Список литературы

1. Балашевич Л.И., Качанов А.Б. Клиническая корнеотопография и аберрометрия. М.: ФГБУ «МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова»; 2008. 167 с.

2. Rabinowitz Y.S., Yang H., Brickman Y., et al. Videokeratography database of normal human corneas. Br. J. Ophthalmol. 1996;80(7):610–616. https://doi.org/10.1136/bjo.80.7.610

3. Bogan S.J., Waring G.O. 3rd, Ibrahim O., Drews C., Curtis L. Classification of normal corneal topography based on computer-assisted videokeratography. Arch. Ophthalmol. 1990;108(7):945–949. https://doi.org/10.1001/archopht.1990.01070090047037

4. Li X., Yang H., Rabinowitz Y.S. Keratoconus: classification scheme based on videokeratography and clinical signs. J. Cataract Refract. Surg. 2009;35(9):1597–1603. https://doi.org/10.1016/j.jcrs.2009.03.050

5. Lebow K. Learning the intricacies of axial and tangential maps. Contact Lens Spectrum. September 1, 1999.

6. Naroo S., et al. Corneal topography in assessing multifocal CL centration. Abstracts. Contact Lens & Anterior Eye. 2018;41S:S47–S80.

7. Oliveira C.M., Ribeiro C., Franco S. Corneal imaging with slit-scanning and Scheimpflug imaging techniques. Clin. Exp. Optom. 2011;94(1):33–42. https://doi.org/10.1111/j.1444-0938.2010.00509.x

8. Walker M. Mapping out corneal topography: understanding the ins and outs of corneal imaging will help you better manage contact lens patients in your practice. Review of Optometry. 2017;154(8):60.

9. Belin M.W., Khachikian S.S. An introduction to understanding elevation-based topography: how elevation data are displayed – a review. Clin. Exp. Ophthalmol. 2009;37(1):14–29. https://doi.org/10.1111/j.1442-9071.2008.01821.x

10. Liu Z., Huang A.J., Pflugfelder S.C. Evaluation of corneal thickness and topography in normal eyes using the Orbscan corneal topography system. Br. J. Ophthalmol. 1999;83(7):774–778. https://doi.org/10.1136/bjo.83.7.774

11. Ambrósio R. Jr, Alonso R.S., Luz A., Coca Velarde L.G. Corneal-thickness spatial profile and corneal-volume distribution: tomographic indices to detect keratoconus. J. Cataract Refract. Surg. 2006;32(11):1851–1859. https://doi.org/10.1016/j.jcrs.2006.06.025

12. Mountford J., Carkeet N., Carney L. Corneal thickness changes during scleral lens wear: effect of gas permeability. Int. Contact Lens Clin. 1994;21(1–2):19–22.

13. Compan V., Oliveira C., Aguilella-Arzo M., et al. Oxygen diffusion and edema with modern scleral rigid gas permeable contact lenses. Invest. Ophthalmol. Vis. Sci. 2014;55(10):6421–6429.

14. Jaynes J., Edrington T., Weissman B. Predicting scleral GP lens entrapped tear layer oxygen tensions. Contact Lens Anterior Eye. 2015;38:44–47.

15. Michaud L., van der Worp E., Brazeau D., et al. Predicting estimates of oxygen transmissibility for scleral lenses. Contact Lens Anterior Eye. 2012;35(6):266–271.

16. Cavas-Martínez F., De la Cruz Sánchez E., Nieto Martínez J., Fernández Cañavate F.J., Fernández-Pacheco D.G. Corneal topography in keratoconus: state of the art. Eye Vis. (Lond.). 2016;3:5. https://doi.org/10.1186/s40662-016-0036-8

17. Maeda N., Klyce S.D., Smolek M.K., Thompson H.W. Automated keratoconus screening with corneal topography analysis. Invest. Ophthalmol. Vis. Sci. 1994;35(6):2749–2757.

18. Calossi A. Corneal asphericity and spherical aberration. J. Refract. Surg. 2007;23(5):505–514.

19. Benes P., Synek S., Petrová S. Corneal shape and eccentricity in population. Coll. Antropol. 2013;37(Suppl 1):117–120.

20. Dingeldein S.A., Klyce S.D., Wilson S.E. Quantitative descriptors of corneal shape derived from computer-assisted analysis of photokeratographs. Refract Corneal Surg. 1989;5(6):372–378.

21. Liu Z., Pflugfelder S.C. Corneal surface regularity and the effect of artificial tears in aqueous tear deficiency. Ophthalmology. 1999;106(5):939–943. https://doi.org/10.1016/S0161-6420(99)00513-8

22. Wahba S.S., Roshdy M.M., Fikry R.R., Abdellatif M.K., Abodarahim A.M. Topographic asymmetry indices: correlation between inferior minus superior value and index of height decentration. J. Ophthalmol. 2018;2018:7875148. https://doi.org/10.1155/2018/7875148

23. Wilson S.E., Lin D.T., Klyce S.D. Corneal topography of keratoconus. Cornea. 1991;10(1):2–8.

24. Rabinowitz Y.S., Rasheed K. KISA% index: a quantitative videokeratography algorithm embodying minimal topographic criteria for diagnosing keratoconus [published correction appears in J. Cataract Refract. Surg. 2000 Apr;26(4)480]. J. Cataract Refract. Surg. 1999;25(10):1327–1335. https://doi.org/10.1016/s0886-3350(99)00195-9

25. Saad A., Gatinel D. Topographic and tomographic properties of forme fruste keratoconus corneas. Invest. Ophthalmol. Vis. Sci. 2010;51(11):5546–5555. https://doi.org/10.1167/iovs.10-5369

26. Holladay J.T. Keratoconus detection using corneal topography. J. Refract. Surg. 2009;25(10 Suppl):S958–S962. https://doi.org/10.3928/1081597X-20090915-11

27. Lindsay R. Quick Guide to the management of keratoconus by Sinjab, Mazen M. New York: Springer, 2012, 151 pages, RRP $194.95. Clin. Exp. Optom. 2013;96(2):254. https://doi.org/10.1111/j.1444-0938.2012.00811.x

28. Khachikian S.S., Belin M.W., Ciolino J.B. Intrasubject corneal thickness asymmetry. J. Refract. Surg. 2008;24(6):606–609. https://doi.org/10.3928/1081597X-20080601-09

29. Du X.L., Chen M., Xie L.X. Correlation of basic indicators with stages of keratoconus assessed by Pentacam tomography. Int. J. Ophthalmol. 2015;8(6):1136–1140. https://doi.org/10.3980/j.issn.2222-3959.2015.06.10


Об авторе

Г. В. Андриенко
АНО «Национальный институт миопии»
Россия

Андриенко Гульнара Владимировна, врач-офтальмолог, научный сотрудник отдела ортокератологии и контроля миопии

член Международной академии ортокератологии и контроля миопии и Международной ассоциации преподавателей по контактной коррекции



Рецензия

Для цитирования:


Андриенко Г.В. Визуализация и оценка передней поверхности роговицы с помощью видеокератотопографии (часть II). The EYE ГЛАЗ. 2020;22(3(131)):43-51. https://doi.org/10.33791/2222-4408-2020-3-43-51

For citation:


Andrienko G.V. Visualization and assessment of the anterior surface of the cornea by corneal topography (Part II). The EYE GLAZ. 2020;22(3(131)):43-51. (In Russ.) https://doi.org/10.33791/2222-4408-2020-3-43-51

Просмотров: 3272


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2222-4408 (Print)
ISSN 2686-8083 (Online)