Efficacy of myopia control by combination of orthokeratology and instillation of low-concentration atropine
https://doi.org/10.33791/2222-4408-2019-2-22-30
Abstract
Majority of reports regarding methods of myopia control are devoted to the use of orthokeratology lenses (OKL) or atropine. The purpose of the study was to estimate the efficacy and safety of using OKL in combination with instillation of 0.01% atropine drops for myopia control in children.
Material and methods. Prospective cohort study included 34 patients (68 eyes) aged 8 to 14 years old with acquired myopia. Groups with low (17 patients, 34 eyes), moderate (12 patients, 24 eyes) and high (5 patients, 10 eyes) myopia were identified and examined prior to and 6, 12 and 18 months after adding 0.01% atropine instillations to OKL wearing. To assess the degree of progression of myopia in dynamics the following parameters were evaluated: refraction (by Huvitz MRK 3100P, axial length (AL) by IOL-Master, “Carl Zeiss”, (Germany), amplitude of accommodation (AA) by Grand Seiko WRK-5100K, positive-relative accommodation (PRA), pseudoaccommodation (PA) and annual gradient of progression (AGP).
Results. The most noticeable effect was observed in patients with low myopia. In patients with low myopia, the rate of annual progression gradient decreased by 3.4 times by 18th month of atropine use; therefore a condition close to stabilization of myopia progression occurred. The data is statistically significant.
In patients with moderate myopia, despite the decrease of the AGP within 6-month period of atropine use by 3.7 times, the increase of APG was observed by 12th month of atropine use, which continued until 18th month of observation. In spite of this, in comparison with baseline indices, the decrease in the rate of myopia progression was obtained. The data is statistically significant.
In patients with high myopia, change in the AGP was not observed within the 6-month period of atropine use; afterwards, a gradual decrease in the rate of myopia progression was noted: AGP decreased by 1.2 times by 12th month. By 18th month of atropine use, AGP decreased by 1.5 times compared to its initial level. The data is statistically significant.
Evidently, the inhibitory effect of OKL, which is determined by optical factors such as peripheral myopic defocus, even in combination with atropine, is not sufficient to halt the progression of high myopia, because of structural and biomechanical changes of the sclera.
Conclusion. Based on the preliminary results obtained, 100% efficacy of a long-term instillation of low-concentration atropine cannot be claimed, how-ever, the positive effect does exist and therefore the study continues.
About the Authors
E. P. TaruttaRussian Federation
Med.Sc.D., Professor, Head of Refraction pathology, Binocular vision and Ophthalmic Ergonomics Department
14/19 Sadovaya-Chernogryazskaya St., Moscow, 105062, Russian Federation
T. Yu. Verzhanskaya
Russian Federation
Ph.D., Head of Orthokeratology and Control of Myopia Department
2a Leninsky prospect, Moscow, 119049, Russian Federation
References
1. Cooper J., Schulman E., Jamal N. Current status on the development and treatment of myopia. Optometry. 2012;83(5):179-199.
2. Takahiro Hiraoka, Tetsuhiko Kakita, Fumiki Okamoto et al. Long-term effect of overnight orthokeratology on axial length elongation in child-hood myopia: a 5-year follow-up study. Invest Ophthalmol Vis Sci. 2012;53(7):3913-3919. doi: 10.1167/iovs.11-8453
3. Holden B.A., Fricke T.R., Wilson D.A., Jong M., Nai-doo K.S., Sankaridurg P., Wong T.Y., Naduvilath T.J., Resnikoff S. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036-1042. doi: org/10.1016/j.ophtha.2016.01.006
4. Pararajasegaram R. VISION 2020—the right to sight: from strategies to action. Am J Ophthalmol. 1999;128:359-360. doi: doi.org/10.1016/S0002-9394(99)00251-2
5. Kinoshita N., Konno Y., Hamada N., Kanda Y., Shimmura-Tomita M., Kakehashi A. Additive effects of orthoke-ratology and atropine 0.01% ophthalmic solution in slowing axial elongation in children with myopia: first year results. Jpn J Ophthalmol. 2018 Sep;62(5):544-553. doi: 10.1007/s10384-018-0608-3.
6. Chen Z., Huang S., Zhou J., Xiaomei Q., Zhou X., Xue F. Adjunctive effect of orthokeratology and low dose atropine on axial elongation in fast-progressing myopic children-A preliminary retrospective study. Cont Lens Anterior Eye. 2018 Nov 24. pii: S1367-0484(18)30919-6. doi: 10.1016/j.clae.2018.10.026
7. Wan L., Wei C.C., Chen C.S., Chang C.Y., Lin C.J., Chen J.J., Tien P.T., Lin H.J. The synergistic effects of orthokerato-logy and atropine in slowing the progression of myopia. J Clin Med. 2018;7(9). pii: E259. doi: 10.3390/jcm7090259
8. Cho P., Cheung S.W., Edwards M. The longitudinal orthokeratology research in children (LORIC) in Hong Kong: a pilot study on refractive changes and myopic control. Curr Eye Res. 2005;30(1):71-80.
9. Eiden B., Davis R.L., Bennett E. et al. Stabilization of Myopia by Accelerated Reshaping Technique (SMART). Global Specialty Lens Symposium, January 2011. doi: 10.15406/aovs.2015.02.00046
10. Kakita T., Hiraoka T., Oshika T. Influence of over orthokeratology on axial elongation in childhood myopia. Invest Ophthalmol Vis Sci. 2011;52:2170-2174. doi: 10.1167/iovs.10-5485
11. Hiraoka T., Kakita T., Okamoto F. et al. Long-term effect of overnight orthokeratology on axial length elongation i childhood myopia: a5-year follow-up study. Invest Ophthalmol Vis Sci. 2012;53:3913-3919. doi: 10.1167/iovs.11-8453
12. Stantodomingo-Rubido J., Villa-Collar C., Gilmartin B. et al. Myopia control with orthokeratology contact lenses in spain: refractive and biometric changes. Invest Ophthalmol Vis Sci. 2012;53:5060-5065. doi: 10.1167/iovs.11-8005
13. Cho P., Cheung S.W. Retardation of myopia in orthokeratology (romio) study: a 2-years randomized clinical trial. Invest Ophthalmol Vis Sci. 2012;53(11):7077-7085. doi: 10.1167/iovs.12-10565
14. Chen C., Cheung S.W., Cho P. Myopia control using toric orthokeratology (TO-SEE study). Invest Ophthalmol Vis Sci. 2013;54(10):6510-6517. doi: 10.1167/iovs.13-12527
15. Cheung S.W., Cho P. Validity of axial length measurements for monitoring myopic progression in orthokeratology. Invest Ophthalmol Vis Sci. 2013; 54(3):1613-1615. doi: 10.1167/iovs.12-10434
16. Charm J., Cho P. High myopic-partial reduction orthoke-ratology (HM- PRO): study design. Cont Lens Anterior Eye. 2013;36(4):164-170. doi: org/10.1016/j.clae.2013.02.012
17. Nagorskij P.G., Belkina V.V., Glok M.A., Chernyh V.V. The state of epithelium and corneal stroma in children with myopia using orthokeratology lenses (according to data from optical coherence tomography). Sovremennaja optometrija. 2012;2:18- 27. (In Russ.)
18. Tarutta E.P., Verzhanskaja T.Ju. Stabilizing effect of orthokeratology lenses (ten-year follow-up results). Vestnik oftal’mologii. 2017;133(1):49-54. (In Russ.) doi:org/10.17116/oftalma2017133149-54
19. Curtin B.J. The etiology of myopia. The myopias. Basic science and clinical management. Philadelphia: Harper and Row; 1985:222.
20. Chia A., Lu Q.S., Tan D. Five-year clinical trial on atropine for the treatment of myopia 2: myopia control with Atropine 0.01% eyedrops. Ophthalmology. 2016;123(2):391-399. doi:org/10.1016/j.ophtha.2015.07.004
21. Chew S.J. et. al. Muscarinic antagonists for myopia control. Myopia updates. The 6th International Conference on Myopia, Tokio, 1998;155-162.
22. Khanal S., Turnbull P.R.K., Lee N., Phillips J.R. The effect of atropine on human global flash mfERG responses to retinal defocus. Invest Ophthalmol Vis Sci. 2019;60:218–225. doi:org/10.1167/iovs.18-24600
23. Syniuta L.A., Isenberg S.J. Atropine and bifocals can slow the progression of myopia in children. Binocul Vis Strabismus Q. 2001;16:203-208. doi:org/10.1016/j.ophtha.2017.05.032
24. Jason C. Yam, Yuning Jiang, Shu Min Tang et al. Low-Concentration Atropine for Myopia Progression (LAMP) Study. A randomized, double-blinded, placebo-controlled trial of 0.05%, 0.025%, and 0.01% Atropine eye drops in myopia control. Ophthalmology 2019;126:113-124. doi:org/10.1016/j.ophtha.2018.05.029
25. Smith E.L., 3rd, Huang J., Hung L.F., Blasdel T.L., Humbird T.L., Blockhorst K.H. Hemiretinal form deprivation: evidence for local control of eye growth and refractive development in infant monkeys. Invest Ophthalmol Vis Sci. 2009;50(11):5057-5069.
26. Tarutta E.P., Iomdina E.N., Toloraja R.R., Kruzhkova G.V. Peripheral refraction and eye shape in children with progressive myopia wearing orthokeratology lenses. Rossijskij oftal’mologicheskij zhurnal. 2016;9(1):62-66. (In Russ.). doi:org/10.21516/2072-0076-2016-9-1-62-66
27. Tarutta E., Verzhanskaya T. Parameters of the optikal system of the myopic eye induced by orthokeratological contact lenses and accomodation thereof. Optom Vis Sci. 2009;86(1):56. doi: 10.17116/oftalma2017133149-54
28. Chen Z., Niu L., Xue F., Qu X., Zhou Z., Zhou X., Chu R. Impact of pupil diameter on axial growth in orthokeratology. Optom Vis Sci. 2012;89(11):1636-1640. doi:org/10.1097/OPX.0b013e31826c1831
29. Tarutta E.P., Aljaeva O.O., Verzhanskaja T.Ju., Milash S.V. Results of corneal and total astigmatism estimation by different methods in myopic patients wearing orthokerato-logy contact lenses. Vestnik oftal’mologii. 2013;129(4):59-65. (In Russ.) doi:10.17116/oftalma2017133543-48
30. Tarutta E.P., Egorova T.S., Aljaeva O.O., Verzhanskaja T.Ju. Ophthalmoergonomic and functional parameters in effectiveness estimation of orthokeratologic correction of myopia in children and teenagers.Rossijskij oftal’molo-gicheskij zhurnal. 2012;5(3):63-66. (In Russ.)
31. Method of estimating volume of pseudoaccommodation before and after orthokeratologic myopia correction. Pat. RF 2500339, Russion Federation / E.P. Tarutta, O.O. Aljaeva, T.S. Egorova. N 2012143491; priority 11.10.2012; publ. 10.12.2013, Bjul. № 34. (In Russ.)
32. Zhong Y., Chen Z., Xue F. et al. Corneal power change is predictive of myopia progression in orthokeratology. Optom Vis Sci. 2014;91:404-411. doi: 10.1097/OPX.0000000000000505
Review
For citations:
Tarutta E.P., Verzhanskaya T.Yu. Efficacy of myopia control by combination of orthokeratology and instillation of low-concentration atropine. The EYE GLAZ. 2019;21(2 (126)):22-30. (In Russ.) https://doi.org/10.33791/2222-4408-2019-2-22-30