

Oxygen permeability and gas permeable contact lens materials
https://doi.org/10.33791/2222-4408-2024-3-196-199
Abstract
In this article, we will examine the importance of oxygen permeability (Dk) in gas permeable contact lens materials, and the significance of high Dk in scleral and ortho-k lens designs.
Keywords
About the Authors
M. ConwayUnited Kingdom
Martin Conway - Professional Services Manager of Contamac Ltd., Fellow of British Dispensing Opticians (FBDO), Fellow of International Association of Contact Lens Educators (FIACLE), Fellow of British Contact Lens Association (FBCLA).
Carlton House, Shire Hill, Saffron Walden, Essex CB11 3AU
M. Eddleston
United Kingdom
Mark Eddleston - PhD from the University of Cambridge, Project Leader within the R&D Team at Contamac Ltd.
Carlton House, Shire Hill, Saffron Walden, Essex CB11 3AU
References
1. Holden BA, Mertz GW. Critical oxygen levels to avoid corneal edema for daily and extended wear contact lenses. Invest Ophthalmol Vis Sci. 1984;25(10):1161–1167
2. Harvitt DM, Bonanno JA.Re-evaluation of the oxygen diffusion model for predicting minimum contact lens Dk/t values needed to avoid corneal anoxia. Optom Vis Sci. 1999;76(10):712–719. doi: 10.1097/00006324-199910000-00023
3. Harvitt DM, Bonanno JA. A theoretical model of corneal oxygenation during contact lens wear. Optometry and Vision Science. 2002;79(2):85–96.
4. Brennan NA. Beyond flux: total corneal oxygen consumption as an index of corneal oxygenation during contact lens wear. Optom Vis Sci. 2005;82(6):467–472. doi: 10.1097/01.opx.0000168560.10861.ae
5. Compañ V, Oliveira C, Aguilella-Arzo M, et al. Oxygen diffusion and edema with modern scleral rigid gas permeable contact lenses.Invest Ophthalmol Vis Sci. 2014;55(10):6421–6429. doi: 10.1167/iovs.14-14038
6. Michaud L, van der Worp E, Brazeau D, et al. Predicting estimates of oxygen transmissibility for scleral lenses. Cont Lens Anterior Eye. 2012;35(6):266–271. doi: 10.1016/j.clae.2012.07.004
7. Lira M, Pereira C, Real Oliveira ME, Castanheira EM. Importance of contact lens power and thickness in oxygen transmissibility. Cont Lens Anterior Eye. 2015;38(2):120–126. doi: 10.1016/j.clae.2014.12.002
8. Dhallu SK, Huarte ST, Bilkhu PS, et al. Effect of scleral lens oxygen permeability on corneal physiology. Optom Vis Sci. 2020;97(9):669–675. doi: 10.1097/OPX.0000000000001557
9. Imayasu M, Petroll WM, Jester JV, et al. The relation between contact lens oxygen transmissibility and binding of Pseudomonas aeruginosa to the cornea after overnight wear. Ophthalmology. 1994;101(2):371–388. doi: 10.1016/s0161-6420(94)31326-1
10. Ren DH, Yamamoto K, Ladage PM, et al. Adaptive effects of 30-night wear of hyper-O(2) transmissible contact lenses on bacterial binding and corneal epithelium: a 1-year clinical trial. Ophthalmology. 2002;109(1):27–39; discussion 39–40. doi: 10.1016/s0161-6420(01)00867-3
11. Ladage PM, Yamamoto K, Ren DH, et al. Effects of rigid and soft contact lens daily wear on corneal epithelium, tear lactate dehydrogenase, and bacterial binding to exfoliated epithelial cells. Ophthalmology. 2001;108(7):1279–1288. doi: 10.1016/s0161-6420(01)00639-x
Review
For citations:
Conway M., Eddleston M. Oxygen permeability and gas permeable contact lens materials. The EYE GLAZ. 2024;26(3):196-199. (In Russ.) https://doi.org/10.33791/2222-4408-2024-3-196-199