

Material science: biomimetic surface enhancement
https://doi.org/10.33791/2222-4408-2023-3-235-243
Abstract
Approximately 60% of individuals who use contact lenses prefer to use frequent replacement lenses. Despite various improvements in contact lens technology, there has been minimal progress in weekly/monthly lenses. Meeting the requirements of patients who prefer frequent replacement lenses demands new technological advancements. Experts analyse the concept of biomimicry and its role in enhancing the relationship between contact lenses and the ocular surface.
About the Authors
K. IshiharaJapan
Professor at the Department of Materials Engineering
Bunkyo City, Tokyo, 113-8654
E. Papas
Australia
Professor of the School of Optometry & Vision Science
High St Kensington, Sydney, NSW 2052
J. Pruitt
United States
Chemical Engineer
6201 South Freeway Fort Worth, TX 76134-2001
C. Kunnen
United States
Senior Lead of the Clinical Development & Medical Affairs Project
6201 South Freeway Fort Worth, TX 76134-2001
C. Mack
United States
Global Head of Professional Affairs
6201 South Freeway Fort Worth, TX 76134-200
E. Bauman
United States
Senior Director of the Project Leadership
6201 South Freeway Fort Worth, TX 76134-200
Ye Hong
United States
Director of Research and Development for Ocular Health and Dry Eye
6201 South Freeway Fort Worth, TX 76134-200
References
1. Nichols J.J., Starcher L. Contact lenses 2019. Contact Lens Spectrum. 2020;35:18,19,21–25. URL: https://www.clspec-trum.com/issues/2020/january-2020/contact-lenses-2019 (Accessed: 01.01.2020).
2. Pruitt J., Bauman E. The development of Dailies Total1 water gradient contact lenses. Contact Lens Spectrum. 2013:40–44. URL: https://www.clspectrum.com/supplements/2013/june-2013/the-world-x0027;s-first-and-only-water-gradient-c/font-color-000000-special-edition-2013-font-(11) (Accessed 01/01/2020)
3. Omali N.B., Zhu H., Zhao Z., Willcox M.D. Protein deposition and its effect on bacterial adhesion to contact lenses. Optometry & Vision Science. 2013;90:557–564. https://doi.org/10.1097/opx.0b013e318292bb13
4. Khan S.A., Lee C.S. Recent progress and strategies to develop antimicrobial contact lenses and lens cases for different types of microbial keratitis. Acta Biomaterials. 2020;113:101– 118. https://doi.org/10.1016/j.actbio.2020.06.039
5. Yeung K.K., Dinh C.K. Dissecting the soft contact lens. Review of Optometry. August 15, 2018. URL: https://www.reviewo-foptometry.com/article/dissecting-the-soft-contact-lens (Accessed 15/01/2021)
6. American Optometric Association. Contact Lens Care. 2020. URL: https://www.aoa.org/healthy-eyes/vision-and-vi-sion-correction/contact-lens-care?sso=y (Accessed 15/01/2021)
7. Fleiszig S.M.J., Kroken A.R., Nieto V. et al. Contact lens-related corneal infection: intrinsic resistance and its compromise. Progress in Retina & Eye Research. 2020;76:100804. https://doi.org/10.1016/j.preteyeres.2019.100804
8. Mayers M. An overview of the cornea and CL surface chemistry. Review of Cornea & Contact Lens. 2010. URL: https://www.reviewofcontactlenses.com/article/an-over-view-of-the-cornea-and-cl-surface-chemistry (Accessed 15/01/2021).
9. Kurpakus Wheater M., Kernacki K.A., Hazlett L.D. Corneal cell proteins and ocular surface pathology. Biotechnology Histochemistry. 1999;74:146–159. https://doi.org/10.3109/10520299909047967
10. Gipson I.K. Distribution of mucins at the ocular surface. Experimental Eye Research. 2004;78:379–388. https://doi.org/10.1016/s0014-4835(03)00204-5
11. Gipson I.K., Argüeso P. Role of mucins in the function of the corneal and conjunctival epithelia. International Review of Cytology. 2003;231:1–49. https://doi.org/10.1016/s0074-7696(03)31001-0
12. Ishihara K., Mu M., Konno T., Inoue Y., Fukazawa K. The unique hydration state of poly (2-methacryloyloxyethyl phosphorylcholine). Journal of Biomaterials Science and Polymer Education. 2017;28:884–899. https://doi.org/10.1080/09205063.2017.1298278
13. Goda T., Ishihara K., Miyahara Y. Critical update on 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer science. Journal of Applied Polymer Science. 2015;1–10. https://doi.org/10.1002/app.41766
14. Ishihara K. Revolutionary advances in 2-methacryloyloxy-ethyl phosphorylcholine polymers as biomaterials. Journal of the Biomedical and Material Research Association. 2019;107:933– 943. https://doi.org/10.1002/jbm.a.36635
15. Dursch T., Svitova T.F., Meng S.C. Advances in soft lens materials and designs. Contact Lens Spectrum. 2015;30:20–23. URL: https://www.clspectrum.com/issues/2015/december-2015/advances-in-soft-lens-materials-and-designs (Accessed 15/01/2021).
16. Goda T., Ishihara K. Soft contact lens biomaterials from bioinspired phospholipid polymers. Expert Reviews of Medical Devices. 2006;3:167–174. https://doi.org/10.1586/17434440.3.2.167
17. Kaneko T., Saito T., Shobuike T. et al. 2-Methacryloyloxyethyl phosphorylcholine polymer coating inhibits bacterial adhesion and biofilm formation on a suture: an in vitro and in vivo study. Biomedical Research International. 2020;2020:5639651. https://doi.org/10.1155/2020/5639651
18. Tam C., Mun J.J., Evans D.J., Fleiszig S.M. The impact of inoculation parameters on the pathogenesis of contact lens-related infectious keratitis. Investigative Ophthalmology & Vision Science. 2010;51:3100–3106. https://doi.org/10.1167%2Fio-vs.09-4593
19. Dutta D., Cole N., Willcox M. Factors influencing bacterial adhesion to contact lenses. Molecular Vision. 2012;18:14–21.
20. Hilliam Y., Kaye S., Winstanley C. Pseudomonas aeruginosa and microbial keratitis. Journal of Medical Microbiology. 2020;69:3–13. https://doi.org/10.1099/jmm.0.001110
21. Gipson I.K. The ocular surface: the challenge to enable and protect vision: the Friedenwald lecture. Investigative Ophthalmology & Vision Science. 2007;48:4390–4398. https://doi.org/10.1167/iovs.07-0770
22. Carraway K.L., Price-Schiavi S.A., Komatsu M. et al. Multiple facets of sialomucin complex/MUC4, a membranemucin and erbb2 ligand, in tumors and tissues (Y2K update). Frontiers in Bioscience. 2000;5:D95–D107. https://doi.org/10.2741/car-raway
23. Hirota K., Murakami K., Nemoto K., Miyake Y. Coating of a surface with 2-methacryloyloxyethylphosphorylcholine (MPC) co-polymer significantly reduces retention of human pathogenic microorganisms. FEMS Microbiology Letters. 2005;248:37–45. https://doi.org/10.1016/j.femsle.2005.05.019
24. Lee M.J., Kwon J.S., Kim J.Y. et al. Bioactive resin-based composite with surface pre-reacted glass-ionomer filler and zwitterionic material to prevent the formation of multi-species biofilm. Dental Materials. 2019;35:1331–1341. https://doi.org/10.1016/j.dental.2019.06.004
25. Fujiwara N., Yumoto H., Miyamoto K. et al. 2-Methacryloyloxyethyl phosphorylcholine (MPC)polymer suppresses an increase of oral bacteria: a single-blind, crossover clinical trial. Clinical Oral Investigations.2019;23:739–746. https://doi.org/10.1007/s00784-018-2490-2
26. Boost M., Cho P., Wang Z. Disturbing the balance: effect of contact lens use on the ocular proteome and microbiome. Clinical & Experimental Optometry. 2017;100:459–472. https://doi.org/10.1111/cxo.12582
27. Truong T.N., Graham A.D., Lin M.C. Factors in contact lens symptoms: evidence from a multi-study database. Optometry & Vision Science. 2014;91:133–141. https://doi.org/10.1097/opx.0000000000000138
28. Iskeleli G., Ozkiris A., Tanidir R., Kizilkaya M. Comparison of conventional and frequent replacement daily wear soft contact lenses. Contactologia. 2000;22:84–88. URL: https://avesis.iuc.edu.tr/yayin/04dd97d1-64f4-40ee-aaf0-d92cb476b30a/a-comparison-of-conventional-and-frequent-replacement-dai-ly-wear-soft-contact-lenses
29. Kenny S.E., Tye C.B., Johnson D.A., Kheirkhah A. Giant papillary conjunctivitis: a review. Ocular Surface. 2020;18:396–402. https://doi.org/10.1016/j.jtos.2020.03.007
30. Luensmann D., Jones L. Protein deposition on contact lenses: the past, the present, and the future. Contact Lens & Anterior Eye. 2012;35:53–64. https://doi.org/10.1016/j.clae.2011.12.005
31. Subbaraman L.N., Glasier M.A., Varikooty J., Srinivasan S., Jones L. Protein deposition and clinical symptoms in daily wear of etafilcon lenses. Optometry & Vision Science. 2012;89:1450– 1459. https://doi.org/10.1097/opx.0b013e318269e583
32. Vijay A.K., Zhu H., Ozkan J. et al. Bacterial adhesion to unworn and worn silicone hydrogel lenses. Optometry & Vision Science. 2012;89:1095–1106. https://doi.org/10.1097/opx.0b013e318264f4dc
33. Zhao Z., Wei X., Aliwarga Y., Carnt N.A., Garrett Q., Willcox M.D. Proteomic analysis of protein deposits on worndaily wear silicone hydrogel contact lenses. Molecular Vision. 2008;14:2016–2024. https://pubmed.ncbi.nlm.nih.gov/18989384
34. McCanna D.J., Oh S., Seo J. et al. The effect of denatured lysozyme on human corneal epithelial cells. Investigative Ophthalmology & Vision Science. 2018;59:2006–2014. https://doi.org/10.1167/iovs.17-22260
35. Schulz C. Ocular inflammation. General Intermediate Medical Clinical Innovations. 2018;3:1–3.
36. Feng W., Zhu S., Ishihara K., Brash J.L. Adsorption of fibrinogen and lysozyme on silicon grafted with poly (2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization. Langmuir. 2005;21:5980– 5987. https://doi.org/10.1021/la050277i
37. Spadafora A., Korogiannaki M., Sheardown H. Antifouling silicone hydrogel contact lenses via densely graftedphosphorylcholine polymers. Biointerphases. 2020;15:041013. https://doi.org/10.1116/6.0000366
38. Chang W.-H., Liu P.-Y., Lu C.-J. et al. Reduction of physical strength and enhancement of anti-protein and anti-lipid adsorption abilities of contact lenses by adding 2-methacryloyloxyethyl phosphorylcholine. Macromolecular Research. 2020;28:1064–1073. https://doi.org/10.1007/s13233-020-8149-2
39. Vales T.P., Jee J.P., Lee W.Y. et al. Development of poly (2-methacryloyloxyethyl phosphorylcholine)-functionalized hydrogels for reducing protein and bacterial adsorption. Materials (Basel). 2020;13:943. https://doi.org/10.3390/ma13040943
40. Xiao A., Dhand C., Leung C.M., Beuerman R.W., Ramakrishna S., Lakshminarayanan R. Strategies to designantimicrobial contact lenses and contact lens cases. Journal of Material & Chemical Biology. 2018;6:2171–2186. http://dx.doi.org/10.1039/C7TB03136J
41. Iwasaki Y., Ishihara K. Phosphorylcholine-containing polymers for biomedical applications. Analls of Bioanalytical Chemistry. 2005;381:534–546. https://doi.org/10.1007/s00216-004-2805-9
42. Takahashi N., Iwasa F., Inoue Y., Morisaki H., Ishihara K., Baba K. Evaluation of the durability and antiadhesive action of 2-methacryloyloxyethyl phosphorylcholine grafting on an acrylic resin denture base material. Journal of Prosthetic Dentistry. 2014;112:194–203. https://doi.org/10.1016/j.pros-dent.2013.08.020
43. Ishihara K. Highly lubricated polymer interfaces for advanced artificial hip joints through biomimetic design. Polymer Journal. 2015;47:585–597. http://dx.doi.org/10.1038/pj.2015.45
44. NOF Corporation. Life science products. 2020. URL: https://www.nof.co.jp/english/business/life (Accessed 15/01/2021).
45. Sulley A., Dumbleton K. Silicone hydrogel daily disposable benefits: the evidence. Contact Lens & Anterior Eye. 2020;43:298–307. https://doi.org/10.1016/j.clae.2020.02.001
46. Szczotka-Flynn L.B., Bajaksouzian S., Jacobs M.R., Rimm A. Risk factors for contact lens bacterial contamination during continuous wear. Optometry & Vision Science. 2009;86:1216– 1226. https://doi.org/10.1097%2FOPX.0b013e3181bbca18
47. Rumpakis J.M.B. New data on contact lens dropouts: an international perspective. Review of Optometry. January 15, 2010. URL:
Review
For citations:
Ishihara K., Papas E., Pruitt J., Kunnen C., Mack C., Bauman E., Hong Ye. Material science: biomimetic surface enhancement. The EYE GLAZ. 2023;25(3):235-243. (In Russ.) https://doi.org/10.33791/2222-4408-2023-3-235-243